Loading…

Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals

Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the a...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in plant science 2022-07, Vol.13, p.882382-882382
Main Authors: D'Ascenzo, Nicola, Xie, Qingguo, Antonecchia, Emanuele, Ciardiello, Mariachiara, Pagnani, Giancarlo, Pisante, Michele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c392t-d341976eb3ae7e0a9d771c0b1459288b391774725c1f5c2c808508dc6ae5a4633
container_end_page 882382
container_issue
container_start_page 882382
container_title Frontiers in plant science
container_volume 13
creator D'Ascenzo, Nicola
Xie, Qingguo
Antonecchia, Emanuele
Ciardiello, Mariachiara
Pagnani, Giancarlo
Pisante, Michele
description Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.
doi_str_mv 10.3389/fpls.2022.882382
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2af038e4c6da4cb8908f746f60b54b87</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2af038e4c6da4cb8908f746f60b54b87</doaj_id><sourcerecordid>2700312996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d341976eb3ae7e0a9d771c0b1459288b391774725c1f5c2c808508dc6ae5a4633</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhlcIRKvSO0cfuST4--OCFIUCVStRqUGCkzXr9QZX3nWwnUj99zikqqgvrzUzfmY8b9e9J3jJmDYfx10sS4opXWpNmaavunMiJV9wSX--_u9-1l2W8oDbERgbo952Z0wYTgyn592vmzD7GhzE-IjWaS6hVD9X9BkqoFUpYQoRakgzGlNGdxFa7u5qg-53kItHmzB5tHI1HEJt7_f54NF92M4Qy7vuzdjEXz7pRffjy9Vm_W1x-_3r9Xp1u3DM0LoYWJtESd8z8MpjMINSxOGecGGo1j0zRCmuqHBkFI46jbXAenASvAAuGbvork_cIcGD3eUwQX60CYL9F0h5ayG3H0ZvKYyYac-dHIC7XhusR8XlKHEveK9VY306sXb7fvKDa5vIEF9AX2bm8Ntu08EaJiQ1x2E-PAFy-rP3pdopFOdj25tP-2KpwpgRaoxspfhU6nIqJfvxuQ3B9miwPRpsjwbbk8HsL8Y-mGE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700312996</pqid></control><display><type>article</type><title>Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals</title><source>PubMed Central</source><creator>D'Ascenzo, Nicola ; Xie, Qingguo ; Antonecchia, Emanuele ; Ciardiello, Mariachiara ; Pagnani, Giancarlo ; Pisante, Michele</creator><creatorcontrib>D'Ascenzo, Nicola ; Xie, Qingguo ; Antonecchia, Emanuele ; Ciardiello, Mariachiara ; Pagnani, Giancarlo ; Pisante, Michele</creatorcontrib><description>Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2022.882382</identifier><identifier>PMID: 35941942</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>data assimilation algorithms ; data-driven digital signal processing for plant imaging ; dynamic plant positron emission tomography ; functional plant imaging ; kinetic modeling ; Plant Science ; portable imaging device</subject><ispartof>Frontiers in plant science, 2022-07, Vol.13, p.882382-882382</ispartof><rights>Copyright © 2022 D'Ascenzo, Xie, Antonecchia, Ciardiello, Pagnani and Pisante. 2022 D'Ascenzo, Xie, Antonecchia, Ciardiello, Pagnani and Pisante</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c392t-d341976eb3ae7e0a9d771c0b1459288b391774725c1f5c2c808508dc6ae5a4633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356293/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356293/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>D'Ascenzo, Nicola</creatorcontrib><creatorcontrib>Xie, Qingguo</creatorcontrib><creatorcontrib>Antonecchia, Emanuele</creatorcontrib><creatorcontrib>Ciardiello, Mariachiara</creatorcontrib><creatorcontrib>Pagnani, Giancarlo</creatorcontrib><creatorcontrib>Pisante, Michele</creatorcontrib><title>Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals</title><title>Frontiers in plant science</title><description>Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.</description><subject>data assimilation algorithms</subject><subject>data-driven digital signal processing for plant imaging</subject><subject>dynamic plant positron emission tomography</subject><subject>functional plant imaging</subject><subject>kinetic modeling</subject><subject>Plant Science</subject><subject>portable imaging device</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vEzEQhlcIRKvSO0cfuST4--OCFIUCVStRqUGCkzXr9QZX3nWwnUj99zikqqgvrzUzfmY8b9e9J3jJmDYfx10sS4opXWpNmaavunMiJV9wSX--_u9-1l2W8oDbERgbo952Z0wYTgyn592vmzD7GhzE-IjWaS6hVD9X9BkqoFUpYQoRakgzGlNGdxFa7u5qg-53kItHmzB5tHI1HEJt7_f54NF92M4Qy7vuzdjEXz7pRffjy9Vm_W1x-_3r9Xp1u3DM0LoYWJtESd8z8MpjMINSxOGecGGo1j0zRCmuqHBkFI46jbXAenASvAAuGbvork_cIcGD3eUwQX60CYL9F0h5ayG3H0ZvKYyYac-dHIC7XhusR8XlKHEveK9VY306sXb7fvKDa5vIEF9AX2bm8Ntu08EaJiQ1x2E-PAFy-rP3pdopFOdj25tP-2KpwpgRaoxspfhU6nIqJfvxuQ3B9miwPRpsjwbbk8HsL8Y-mGE</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>D'Ascenzo, Nicola</creator><creator>Xie, Qingguo</creator><creator>Antonecchia, Emanuele</creator><creator>Ciardiello, Mariachiara</creator><creator>Pagnani, Giancarlo</creator><creator>Pisante, Michele</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220722</creationdate><title>Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals</title><author>D'Ascenzo, Nicola ; Xie, Qingguo ; Antonecchia, Emanuele ; Ciardiello, Mariachiara ; Pagnani, Giancarlo ; Pisante, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d341976eb3ae7e0a9d771c0b1459288b391774725c1f5c2c808508dc6ae5a4633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>data assimilation algorithms</topic><topic>data-driven digital signal processing for plant imaging</topic><topic>dynamic plant positron emission tomography</topic><topic>functional plant imaging</topic><topic>kinetic modeling</topic><topic>Plant Science</topic><topic>portable imaging device</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Ascenzo, Nicola</creatorcontrib><creatorcontrib>Xie, Qingguo</creatorcontrib><creatorcontrib>Antonecchia, Emanuele</creatorcontrib><creatorcontrib>Ciardiello, Mariachiara</creatorcontrib><creatorcontrib>Pagnani, Giancarlo</creatorcontrib><creatorcontrib>Pisante, Michele</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Ascenzo, Nicola</au><au>Xie, Qingguo</au><au>Antonecchia, Emanuele</au><au>Ciardiello, Mariachiara</au><au>Pagnani, Giancarlo</au><au>Pisante, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals</atitle><jtitle>Frontiers in plant science</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>13</volume><spage>882382</spage><epage>882382</epage><pages>882382-882382</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.</abstract><pub>Frontiers Media S.A</pub><pmid>35941942</pmid><doi>10.3389/fpls.2022.882382</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-462X
ispartof Frontiers in plant science, 2022-07, Vol.13, p.882382-882382
issn 1664-462X
1664-462X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2af038e4c6da4cb8908f746f60b54b87
source PubMed Central
subjects data assimilation algorithms
data-driven digital signal processing for plant imaging
dynamic plant positron emission tomography
functional plant imaging
kinetic modeling
Plant Science
portable imaging device
title Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetically%20Consistent%20Data%20Assimilation%20for%20Plant%20PET%20Sparse%20Time%20Activity%20Curve%20Signals&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=D'Ascenzo,%20Nicola&rft.date=2022-07-22&rft.volume=13&rft.spage=882382&rft.epage=882382&rft.pages=882382-882382&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2022.882382&rft_dat=%3Cproquest_doaj_%3E2700312996%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-d341976eb3ae7e0a9d771c0b1459288b391774725c1f5c2c808508dc6ae5a4633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700312996&rft_id=info:pmid/35941942&rfr_iscdi=true