Loading…
Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals
Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the a...
Saved in:
Published in: | Frontiers in plant science 2022-07, Vol.13, p.882382-882382 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-d341976eb3ae7e0a9d771c0b1459288b391774725c1f5c2c808508dc6ae5a4633 |
container_end_page | 882382 |
container_issue | |
container_start_page | 882382 |
container_title | Frontiers in plant science |
container_volume | 13 |
creator | D'Ascenzo, Nicola Xie, Qingguo Antonecchia, Emanuele Ciardiello, Mariachiara Pagnani, Giancarlo Pisante, Michele |
description | Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts. |
doi_str_mv | 10.3389/fpls.2022.882382 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2af038e4c6da4cb8908f746f60b54b87</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2af038e4c6da4cb8908f746f60b54b87</doaj_id><sourcerecordid>2700312996</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d341976eb3ae7e0a9d771c0b1459288b391774725c1f5c2c808508dc6ae5a4633</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhlcIRKvSO0cfuST4--OCFIUCVStRqUGCkzXr9QZX3nWwnUj99zikqqgvrzUzfmY8b9e9J3jJmDYfx10sS4opXWpNmaavunMiJV9wSX--_u9-1l2W8oDbERgbo952Z0wYTgyn592vmzD7GhzE-IjWaS6hVD9X9BkqoFUpYQoRakgzGlNGdxFa7u5qg-53kItHmzB5tHI1HEJt7_f54NF92M4Qy7vuzdjEXz7pRffjy9Vm_W1x-_3r9Xp1u3DM0LoYWJtESd8z8MpjMINSxOGecGGo1j0zRCmuqHBkFI46jbXAenASvAAuGbvork_cIcGD3eUwQX60CYL9F0h5ayG3H0ZvKYyYac-dHIC7XhusR8XlKHEveK9VY306sXb7fvKDa5vIEF9AX2bm8Ntu08EaJiQ1x2E-PAFy-rP3pdopFOdj25tP-2KpwpgRaoxspfhU6nIqJfvxuQ3B9miwPRpsjwbbk8HsL8Y-mGE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700312996</pqid></control><display><type>article</type><title>Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals</title><source>PubMed Central</source><creator>D'Ascenzo, Nicola ; Xie, Qingguo ; Antonecchia, Emanuele ; Ciardiello, Mariachiara ; Pagnani, Giancarlo ; Pisante, Michele</creator><creatorcontrib>D'Ascenzo, Nicola ; Xie, Qingguo ; Antonecchia, Emanuele ; Ciardiello, Mariachiara ; Pagnani, Giancarlo ; Pisante, Michele</creatorcontrib><description>Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.</description><identifier>ISSN: 1664-462X</identifier><identifier>EISSN: 1664-462X</identifier><identifier>DOI: 10.3389/fpls.2022.882382</identifier><identifier>PMID: 35941942</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>data assimilation algorithms ; data-driven digital signal processing for plant imaging ; dynamic plant positron emission tomography ; functional plant imaging ; kinetic modeling ; Plant Science ; portable imaging device</subject><ispartof>Frontiers in plant science, 2022-07, Vol.13, p.882382-882382</ispartof><rights>Copyright © 2022 D'Ascenzo, Xie, Antonecchia, Ciardiello, Pagnani and Pisante. 2022 D'Ascenzo, Xie, Antonecchia, Ciardiello, Pagnani and Pisante</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c392t-d341976eb3ae7e0a9d771c0b1459288b391774725c1f5c2c808508dc6ae5a4633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356293/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356293/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>D'Ascenzo, Nicola</creatorcontrib><creatorcontrib>Xie, Qingguo</creatorcontrib><creatorcontrib>Antonecchia, Emanuele</creatorcontrib><creatorcontrib>Ciardiello, Mariachiara</creatorcontrib><creatorcontrib>Pagnani, Giancarlo</creatorcontrib><creatorcontrib>Pisante, Michele</creatorcontrib><title>Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals</title><title>Frontiers in plant science</title><description>Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.</description><subject>data assimilation algorithms</subject><subject>data-driven digital signal processing for plant imaging</subject><subject>dynamic plant positron emission tomography</subject><subject>functional plant imaging</subject><subject>kinetic modeling</subject><subject>Plant Science</subject><subject>portable imaging device</subject><issn>1664-462X</issn><issn>1664-462X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vEzEQhlcIRKvSO0cfuST4--OCFIUCVStRqUGCkzXr9QZX3nWwnUj99zikqqgvrzUzfmY8b9e9J3jJmDYfx10sS4opXWpNmaavunMiJV9wSX--_u9-1l2W8oDbERgbo952Z0wYTgyn592vmzD7GhzE-IjWaS6hVD9X9BkqoFUpYQoRakgzGlNGdxFa7u5qg-53kItHmzB5tHI1HEJt7_f54NF92M4Qy7vuzdjEXz7pRffjy9Vm_W1x-_3r9Xp1u3DM0LoYWJtESd8z8MpjMINSxOGecGGo1j0zRCmuqHBkFI46jbXAenASvAAuGbvork_cIcGD3eUwQX60CYL9F0h5ayG3H0ZvKYyYac-dHIC7XhusR8XlKHEveK9VY306sXb7fvKDa5vIEF9AX2bm8Ntu08EaJiQ1x2E-PAFy-rP3pdopFOdj25tP-2KpwpgRaoxspfhU6nIqJfvxuQ3B9miwPRpsjwbbk8HsL8Y-mGE</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>D'Ascenzo, Nicola</creator><creator>Xie, Qingguo</creator><creator>Antonecchia, Emanuele</creator><creator>Ciardiello, Mariachiara</creator><creator>Pagnani, Giancarlo</creator><creator>Pisante, Michele</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220722</creationdate><title>Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals</title><author>D'Ascenzo, Nicola ; Xie, Qingguo ; Antonecchia, Emanuele ; Ciardiello, Mariachiara ; Pagnani, Giancarlo ; Pisante, Michele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d341976eb3ae7e0a9d771c0b1459288b391774725c1f5c2c808508dc6ae5a4633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>data assimilation algorithms</topic><topic>data-driven digital signal processing for plant imaging</topic><topic>dynamic plant positron emission tomography</topic><topic>functional plant imaging</topic><topic>kinetic modeling</topic><topic>Plant Science</topic><topic>portable imaging device</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>D'Ascenzo, Nicola</creatorcontrib><creatorcontrib>Xie, Qingguo</creatorcontrib><creatorcontrib>Antonecchia, Emanuele</creatorcontrib><creatorcontrib>Ciardiello, Mariachiara</creatorcontrib><creatorcontrib>Pagnani, Giancarlo</creatorcontrib><creatorcontrib>Pisante, Michele</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>D'Ascenzo, Nicola</au><au>Xie, Qingguo</au><au>Antonecchia, Emanuele</au><au>Ciardiello, Mariachiara</au><au>Pagnani, Giancarlo</au><au>Pisante, Michele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals</atitle><jtitle>Frontiers in plant science</jtitle><date>2022-07-22</date><risdate>2022</risdate><volume>13</volume><spage>882382</spage><epage>882382</epage><pages>882382-882382</pages><issn>1664-462X</issn><eissn>1664-462X</eissn><abstract>Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.</abstract><pub>Frontiers Media S.A</pub><pmid>35941942</pmid><doi>10.3389/fpls.2022.882382</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-462X |
ispartof | Frontiers in plant science, 2022-07, Vol.13, p.882382-882382 |
issn | 1664-462X 1664-462X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2af038e4c6da4cb8908f746f60b54b87 |
source | PubMed Central |
subjects | data assimilation algorithms data-driven digital signal processing for plant imaging dynamic plant positron emission tomography functional plant imaging kinetic modeling Plant Science portable imaging device |
title | Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetically%20Consistent%20Data%20Assimilation%20for%20Plant%20PET%20Sparse%20Time%20Activity%20Curve%20Signals&rft.jtitle=Frontiers%20in%20plant%20science&rft.au=D'Ascenzo,%20Nicola&rft.date=2022-07-22&rft.volume=13&rft.spage=882382&rft.epage=882382&rft.pages=882382-882382&rft.issn=1664-462X&rft.eissn=1664-462X&rft_id=info:doi/10.3389/fpls.2022.882382&rft_dat=%3Cproquest_doaj_%3E2700312996%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-d341976eb3ae7e0a9d771c0b1459288b391774725c1f5c2c808508dc6ae5a4633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2700312996&rft_id=info:pmid/35941942&rfr_iscdi=true |