Loading…

Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios

In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintai...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-09, Vol.10 (17), p.5971
Main Authors: Kuehn, Sven, Pfeifer, Serge, Kuster, Niels
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03
cites cdi_FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03
container_end_page
container_issue 17
container_start_page 5971
container_title Applied sciences
container_volume 10
creator Kuehn, Sven
Pfeifer, Serge
Kuster, Niels
description In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by >10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established.
doi_str_mv 10.3390/app10175971
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2af0e7960dc444f196a463f8e313debd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2af0e7960dc444f196a463f8e313debd</doaj_id><sourcerecordid>2439491773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBoj35BwIepZqv3WyOUrUtVD3YehJCmkzq1rWzJluk_96tFekcZoY3jzczvCy7YPRaCE1vbNMwylSuFTvKepyqYiAkU8cH_WnWT2lFu9BMlIz2srcZtrYmU3RdvsMEpFqT8bbB9h3aagfmI_KIi6oG8gTtN8aPRAJG8mpjBZ7MsMEalxUkYteezBNE8uJg3U0xnWcnwdYJ-n_1LJs_3M-G48H0eTQZ3k4HThSyHeRlCMqp3HFflKCdpsA5V3oBkPvc5qHgVpdeUG993jGZLANbOM5FkOAtFWfZZK_r0a5ME6tPG7cGbWV-AYxLY2P3TQ2G20BB6YJ6J6UMTBdWFiKUIJjwsPCd1uVeq4n4tYHUmhVu4ro733AptNRMKdGxrvYsFzGlCOF_K6Nm54Y5cEP8AEwrfF8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439491773</pqid></control><display><type>article</type><title>Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios</title><source>Publicly Available Content (ProQuest)</source><creator>Kuehn, Sven ; Pfeifer, Serge ; Kuster, Niels</creator><creatorcontrib>Kuehn, Sven ; Pfeifer, Serge ; Kuster, Niels</creatorcontrib><description>In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by &gt;10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10175971</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>5G mobile communication ; Antennas ; Bandwidths ; base station ; Beamforming ; Cell phones ; Cell size ; Cellular telephones ; Communications networks ; Communications systems ; dosimetry ; exposure assessment ; Frequencies ; Frequency ranges ; MIMO communication ; Mobile communication systems ; mobile networks ; Monte Carlo simulation ; Network topologies ; Public safety ; radio-frequency ; Spectrum allocation ; Wireless networks</subject><ispartof>Applied sciences, 2020-09, Vol.10 (17), p.5971</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03</citedby><cites>FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03</cites><orcidid>0000-0002-5827-3728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2439491773/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2439491773?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Kuehn, Sven</creatorcontrib><creatorcontrib>Pfeifer, Serge</creatorcontrib><creatorcontrib>Kuster, Niels</creatorcontrib><title>Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios</title><title>Applied sciences</title><description>In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by &gt;10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established.</description><subject>5G mobile communication</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>base station</subject><subject>Beamforming</subject><subject>Cell phones</subject><subject>Cell size</subject><subject>Cellular telephones</subject><subject>Communications networks</subject><subject>Communications systems</subject><subject>dosimetry</subject><subject>exposure assessment</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>MIMO communication</subject><subject>Mobile communication systems</subject><subject>mobile networks</subject><subject>Monte Carlo simulation</subject><subject>Network topologies</subject><subject>Public safety</subject><subject>radio-frequency</subject><subject>Spectrum allocation</subject><subject>Wireless networks</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBoj35BwIepZqv3WyOUrUtVD3YehJCmkzq1rWzJluk_96tFekcZoY3jzczvCy7YPRaCE1vbNMwylSuFTvKepyqYiAkU8cH_WnWT2lFu9BMlIz2srcZtrYmU3RdvsMEpFqT8bbB9h3aagfmI_KIi6oG8gTtN8aPRAJG8mpjBZ7MsMEalxUkYteezBNE8uJg3U0xnWcnwdYJ-n_1LJs_3M-G48H0eTQZ3k4HThSyHeRlCMqp3HFflKCdpsA5V3oBkPvc5qHgVpdeUG993jGZLANbOM5FkOAtFWfZZK_r0a5ME6tPG7cGbWV-AYxLY2P3TQ2G20BB6YJ6J6UMTBdWFiKUIJjwsPCd1uVeq4n4tYHUmhVu4ro733AptNRMKdGxrvYsFzGlCOF_K6Nm54Y5cEP8AEwrfF8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kuehn, Sven</creator><creator>Pfeifer, Serge</creator><creator>Kuster, Niels</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5827-3728</orcidid></search><sort><creationdate>20200901</creationdate><title>Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios</title><author>Kuehn, Sven ; Pfeifer, Serge ; Kuster, Niels</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G mobile communication</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>base station</topic><topic>Beamforming</topic><topic>Cell phones</topic><topic>Cell size</topic><topic>Cellular telephones</topic><topic>Communications networks</topic><topic>Communications systems</topic><topic>dosimetry</topic><topic>exposure assessment</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>MIMO communication</topic><topic>Mobile communication systems</topic><topic>mobile networks</topic><topic>Monte Carlo simulation</topic><topic>Network topologies</topic><topic>Public safety</topic><topic>radio-frequency</topic><topic>Spectrum allocation</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuehn, Sven</creatorcontrib><creatorcontrib>Pfeifer, Serge</creatorcontrib><creatorcontrib>Kuster, Niels</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuehn, Sven</au><au>Pfeifer, Serge</au><au>Kuster, Niels</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios</atitle><jtitle>Applied sciences</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>10</volume><issue>17</issue><spage>5971</spage><pages>5971-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by &gt;10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10175971</doi><orcidid>https://orcid.org/0000-0002-5827-3728</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-09, Vol.10 (17), p.5971
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2af0e7960dc444f196a463f8e313debd
source Publicly Available Content (ProQuest)
subjects 5G mobile communication
Antennas
Bandwidths
base station
Beamforming
Cell phones
Cell size
Cellular telephones
Communications networks
Communications systems
dosimetry
exposure assessment
Frequencies
Frequency ranges
MIMO communication
Mobile communication systems
mobile networks
Monte Carlo simulation
Network topologies
Public safety
radio-frequency
Spectrum allocation
Wireless networks
title Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Local%20Dose%20in%20Hypothetical%205G%20Mobile%20Networks%20for%20Varied%20Topologies%20and%20User%20Scenarios&rft.jtitle=Applied%20sciences&rft.au=Kuehn,%20Sven&rft.date=2020-09-01&rft.volume=10&rft.issue=17&rft.spage=5971&rft.pages=5971-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10175971&rft_dat=%3Cproquest_doaj_%3E2439491773%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439491773&rft_id=info:pmid/&rfr_iscdi=true