Loading…
Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios
In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintai...
Saved in:
Published in: | Applied sciences 2020-09, Vol.10 (17), p.5971 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03 |
container_end_page | |
container_issue | 17 |
container_start_page | 5971 |
container_title | Applied sciences |
container_volume | 10 |
creator | Kuehn, Sven Pfeifer, Serge Kuster, Niels |
description | In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by >10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established. |
doi_str_mv | 10.3390/app10175971 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2af0e7960dc444f196a463f8e313debd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2af0e7960dc444f196a463f8e313debd</doaj_id><sourcerecordid>2439491773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBoj35BwIepZqv3WyOUrUtVD3YehJCmkzq1rWzJluk_96tFekcZoY3jzczvCy7YPRaCE1vbNMwylSuFTvKepyqYiAkU8cH_WnWT2lFu9BMlIz2srcZtrYmU3RdvsMEpFqT8bbB9h3aagfmI_KIi6oG8gTtN8aPRAJG8mpjBZ7MsMEalxUkYteezBNE8uJg3U0xnWcnwdYJ-n_1LJs_3M-G48H0eTQZ3k4HThSyHeRlCMqp3HFflKCdpsA5V3oBkPvc5qHgVpdeUG993jGZLANbOM5FkOAtFWfZZK_r0a5ME6tPG7cGbWV-AYxLY2P3TQ2G20BB6YJ6J6UMTBdWFiKUIJjwsPCd1uVeq4n4tYHUmhVu4ro733AptNRMKdGxrvYsFzGlCOF_K6Nm54Y5cEP8AEwrfF8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439491773</pqid></control><display><type>article</type><title>Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios</title><source>Publicly Available Content (ProQuest)</source><creator>Kuehn, Sven ; Pfeifer, Serge ; Kuster, Niels</creator><creatorcontrib>Kuehn, Sven ; Pfeifer, Serge ; Kuster, Niels</creatorcontrib><description>In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by >10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10175971</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>5G mobile communication ; Antennas ; Bandwidths ; base station ; Beamforming ; Cell phones ; Cell size ; Cellular telephones ; Communications networks ; Communications systems ; dosimetry ; exposure assessment ; Frequencies ; Frequency ranges ; MIMO communication ; Mobile communication systems ; mobile networks ; Monte Carlo simulation ; Network topologies ; Public safety ; radio-frequency ; Spectrum allocation ; Wireless networks</subject><ispartof>Applied sciences, 2020-09, Vol.10 (17), p.5971</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03</citedby><cites>FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03</cites><orcidid>0000-0002-5827-3728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2439491773/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2439491773?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Kuehn, Sven</creatorcontrib><creatorcontrib>Pfeifer, Serge</creatorcontrib><creatorcontrib>Kuster, Niels</creatorcontrib><title>Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios</title><title>Applied sciences</title><description>In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by >10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established.</description><subject>5G mobile communication</subject><subject>Antennas</subject><subject>Bandwidths</subject><subject>base station</subject><subject>Beamforming</subject><subject>Cell phones</subject><subject>Cell size</subject><subject>Cellular telephones</subject><subject>Communications networks</subject><subject>Communications systems</subject><subject>dosimetry</subject><subject>exposure assessment</subject><subject>Frequencies</subject><subject>Frequency ranges</subject><subject>MIMO communication</subject><subject>Mobile communication systems</subject><subject>mobile networks</subject><subject>Monte Carlo simulation</subject><subject>Network topologies</subject><subject>Public safety</subject><subject>radio-frequency</subject><subject>Spectrum allocation</subject><subject>Wireless networks</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBoj35BwIepZqv3WyOUrUtVD3YehJCmkzq1rWzJluk_96tFekcZoY3jzczvCy7YPRaCE1vbNMwylSuFTvKepyqYiAkU8cH_WnWT2lFu9BMlIz2srcZtrYmU3RdvsMEpFqT8bbB9h3aagfmI_KIi6oG8gTtN8aPRAJG8mpjBZ7MsMEalxUkYteezBNE8uJg3U0xnWcnwdYJ-n_1LJs_3M-G48H0eTQZ3k4HThSyHeRlCMqp3HFflKCdpsA5V3oBkPvc5qHgVpdeUG993jGZLANbOM5FkOAtFWfZZK_r0a5ME6tPG7cGbWV-AYxLY2P3TQ2G20BB6YJ6J6UMTBdWFiKUIJjwsPCd1uVeq4n4tYHUmhVu4ro733AptNRMKdGxrvYsFzGlCOF_K6Nm54Y5cEP8AEwrfF8</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kuehn, Sven</creator><creator>Pfeifer, Serge</creator><creator>Kuster, Niels</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5827-3728</orcidid></search><sort><creationdate>20200901</creationdate><title>Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios</title><author>Kuehn, Sven ; Pfeifer, Serge ; Kuster, Niels</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5G mobile communication</topic><topic>Antennas</topic><topic>Bandwidths</topic><topic>base station</topic><topic>Beamforming</topic><topic>Cell phones</topic><topic>Cell size</topic><topic>Cellular telephones</topic><topic>Communications networks</topic><topic>Communications systems</topic><topic>dosimetry</topic><topic>exposure assessment</topic><topic>Frequencies</topic><topic>Frequency ranges</topic><topic>MIMO communication</topic><topic>Mobile communication systems</topic><topic>mobile networks</topic><topic>Monte Carlo simulation</topic><topic>Network topologies</topic><topic>Public safety</topic><topic>radio-frequency</topic><topic>Spectrum allocation</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuehn, Sven</creatorcontrib><creatorcontrib>Pfeifer, Serge</creatorcontrib><creatorcontrib>Kuster, Niels</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuehn, Sven</au><au>Pfeifer, Serge</au><au>Kuster, Niels</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios</atitle><jtitle>Applied sciences</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>10</volume><issue>17</issue><spage>5971</spage><pages>5971-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>In this study, the total electromagnetic dose, i.e., the combined dose from fixed antennas and mobile devices, was estimated for a number of hypothetical network topologies for implementation in Switzerland to support the deployment of fifth generation (5G) mobile communication systems while maintaining exposure guidelines for public safety. In this study, we consider frequency range 1 (FR1) and various user scenarios. The estimated dose in hypothetical 5G networks was extrapolated from measurements in one of the Swiss 4G networks and by means of Monte Carlo analysis. The results show that the peak dose is always dominated by an individual’s mobile phone and, in the case of non-users, by the bystanders’ mobile phones. The reduction in cell size and the separation of indoor and outdoor coverage can substantially reduce the total dose by >10 dB. The introduction of higher frequencies in 5G mobile networks, e.g., 3.6 GHz, reduces the specific absorption rate (SAR) in the entire brain by an average of −8 dB, while the SAR in the superficial tissues of the brain remains locally constant, i.e., within ±3 dB. Data from real networks with multiple-input multiple-output (MIMO) were not available; the effect of adaptive beam-forming antennas on the dose will need to be quantitatively revisited when 5G networks are fully established.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10175971</doi><orcidid>https://orcid.org/0000-0002-5827-3728</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2020-09, Vol.10 (17), p.5971 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2af0e7960dc444f196a463f8e313debd |
source | Publicly Available Content (ProQuest) |
subjects | 5G mobile communication Antennas Bandwidths base station Beamforming Cell phones Cell size Cellular telephones Communications networks Communications systems dosimetry exposure assessment Frequencies Frequency ranges MIMO communication Mobile communication systems mobile networks Monte Carlo simulation Network topologies Public safety radio-frequency Spectrum allocation Wireless networks |
title | Total Local Dose in Hypothetical 5G Mobile Networks for Varied Topologies and User Scenarios |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Local%20Dose%20in%20Hypothetical%205G%20Mobile%20Networks%20for%20Varied%20Topologies%20and%20User%20Scenarios&rft.jtitle=Applied%20sciences&rft.au=Kuehn,%20Sven&rft.date=2020-09-01&rft.volume=10&rft.issue=17&rft.spage=5971&rft.pages=5971-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10175971&rft_dat=%3Cproquest_doaj_%3E2439491773%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-58ff7c75c2d68e9c90e22279bee5d5a5f62a98d30dad5f7c148f1bc223f4eda03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2439491773&rft_id=info:pmid/&rfr_iscdi=true |