Loading…
Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem
The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to p...
Saved in:
Published in: | International journal of advanced robotic systems 2018-11, Vol.15 (6) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | International journal of advanced robotic systems |
container_volume | 15 |
creator | Zhao, Rongbo Shi, Zhiping Guan, Yong Shao, Zhenzhou Zhang, Qianying Wang, Guohui |
description | The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints. |
doi_str_mv | 10.1177/1729881418818297 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2af810240e5f49e8a6ae1f55ec59c631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1729881418818297</sage_id><doaj_id>oai_doaj_org_article_2af810240e5f49e8a6ae1f55ec59c631</doaj_id><sourcerecordid>2178952232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63</originalsourceid><addsrcrecordid>eNp1kc9KxDAQxosoKOrdY8BzNUnTJjmK-GdRUETPYZpOtGu3WZNW8eY7-IY-iakrCoJzmBk-vvklw2TZHqMHjEl5yCTXSjHBUlJcy7Vsa5LySVv_6Wm1me3GOKdTSFpquZXNZ_0zhojkse1xAUNrSfTdOLS-J96R6oYEX_uBLKBvl2MHgw-R1BCxIckRbcAXMjygD68E-mZqyTU02H-8vV_AAyTLWC8TosPFTrbhoIu4-123s7vTk9vj8_zy6mx2fHSZW8HkkCuBvJFWMwl1UdSYilBOcXCydg4YKywtRFPKilstKltbXQkly6ppWK1sVWxnsxW38TA3y9AuILwaD635Eny4NxDSoh2aBFWMckGxdEKjggqQubJEW-pEYom1v2KlHZ5GjIOZ-zH06fuGM6l0yXnBk4uuXDb4GAO6n1cZNdOBzN8DpZF8NRLhHn-h__o_ASBPkRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178952232</pqid></control><display><type>article</type><title>Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem</title><source>SAGE Open Access</source><creator>Zhao, Rongbo ; Shi, Zhiping ; Guan, Yong ; Shao, Zhenzhou ; Zhang, Qianying ; Wang, Guohui</creator><creatorcontrib>Zhao, Rongbo ; Shi, Zhiping ; Guan, Yong ; Shao, Zhenzhou ; Zhang, Qianying ; Wang, Guohui</creatorcontrib><description>The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints.</description><identifier>ISSN: 1729-8806</identifier><identifier>EISSN: 1729-8814</identifier><identifier>DOI: 10.1177/1729881418818297</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Inverse kinematics ; Kinematics ; Manipulators ; Mathematical models ; Matrix theory ; Modelling ; Parameters ; Robot arms ; Robots ; Screw theory ; Software reviews</subject><ispartof>International journal of advanced robotic systems, 2018-11, Vol.15 (6)</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63</citedby><cites>FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63</cites><orcidid>0000-0003-2882-4987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1729881418818297$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1729881418818297$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21945,27830,27901,27902,44921,45309</link.rule.ids></links><search><creatorcontrib>Zhao, Rongbo</creatorcontrib><creatorcontrib>Shi, Zhiping</creatorcontrib><creatorcontrib>Guan, Yong</creatorcontrib><creatorcontrib>Shao, Zhenzhou</creatorcontrib><creatorcontrib>Zhang, Qianying</creatorcontrib><creatorcontrib>Wang, Guohui</creatorcontrib><title>Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem</title><title>International journal of advanced robotic systems</title><description>The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints.</description><subject>Algorithms</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Mathematical models</subject><subject>Matrix theory</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Robot arms</subject><subject>Robots</subject><subject>Screw theory</subject><subject>Software reviews</subject><issn>1729-8806</issn><issn>1729-8814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc9KxDAQxosoKOrdY8BzNUnTJjmK-GdRUETPYZpOtGu3WZNW8eY7-IY-iakrCoJzmBk-vvklw2TZHqMHjEl5yCTXSjHBUlJcy7Vsa5LySVv_6Wm1me3GOKdTSFpquZXNZ_0zhojkse1xAUNrSfTdOLS-J96R6oYEX_uBLKBvl2MHgw-R1BCxIckRbcAXMjygD68E-mZqyTU02H-8vV_AAyTLWC8TosPFTrbhoIu4-123s7vTk9vj8_zy6mx2fHSZW8HkkCuBvJFWMwl1UdSYilBOcXCydg4YKywtRFPKilstKltbXQkly6ppWK1sVWxnsxW38TA3y9AuILwaD635Eny4NxDSoh2aBFWMckGxdEKjggqQubJEW-pEYom1v2KlHZ5GjIOZ-zH06fuGM6l0yXnBk4uuXDb4GAO6n1cZNdOBzN8DpZF8NRLhHn-h__o_ASBPkRw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Zhao, Rongbo</creator><creator>Shi, Zhiping</creator><creator>Guan, Yong</creator><creator>Shao, Zhenzhou</creator><creator>Zhang, Qianying</creator><creator>Wang, Guohui</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2882-4987</orcidid></search><sort><creationdate>20181101</creationdate><title>Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem</title><author>Zhao, Rongbo ; Shi, Zhiping ; Guan, Yong ; Shao, Zhenzhou ; Zhang, Qianying ; Wang, Guohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Mathematical models</topic><topic>Matrix theory</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Robot arms</topic><topic>Robots</topic><topic>Screw theory</topic><topic>Software reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Rongbo</creatorcontrib><creatorcontrib>Shi, Zhiping</creatorcontrib><creatorcontrib>Guan, Yong</creatorcontrib><creatorcontrib>Shao, Zhenzhou</creatorcontrib><creatorcontrib>Zhang, Qianying</creatorcontrib><creatorcontrib>Wang, Guohui</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of advanced robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Rongbo</au><au>Shi, Zhiping</au><au>Guan, Yong</au><au>Shao, Zhenzhou</au><au>Zhang, Qianying</au><au>Wang, Guohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem</atitle><jtitle>International journal of advanced robotic systems</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>15</volume><issue>6</issue><issn>1729-8806</issn><eissn>1729-8814</eissn><abstract>The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1729881418818297</doi><orcidid>https://orcid.org/0000-0003-2882-4987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1729-8806 |
ispartof | International journal of advanced robotic systems, 2018-11, Vol.15 (6) |
issn | 1729-8806 1729-8814 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2af810240e5f49e8a6ae1f55ec59c631 |
source | SAGE Open Access |
subjects | Algorithms Inverse kinematics Kinematics Manipulators Mathematical models Matrix theory Modelling Parameters Robot arms Robots Screw theory Software reviews |
title | Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20kinematic%20solution%20of%206R%20robot%20manipulators%20based%20on%20screw%20theory%20and%20the%20Paden%E2%80%93Kahan%20subproblem&rft.jtitle=International%20journal%20of%20advanced%20robotic%20systems&rft.au=Zhao,%20Rongbo&rft.date=2018-11-01&rft.volume=15&rft.issue=6&rft.issn=1729-8806&rft.eissn=1729-8814&rft_id=info:doi/10.1177/1729881418818297&rft_dat=%3Cproquest_doaj_%3E2178952232%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178952232&rft_id=info:pmid/&rft_sage_id=10.1177_1729881418818297&rfr_iscdi=true |