Loading…

Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem

The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to p...

Full description

Saved in:
Bibliographic Details
Published in:International journal of advanced robotic systems 2018-11, Vol.15 (6)
Main Authors: Zhao, Rongbo, Shi, Zhiping, Guan, Yong, Shao, Zhenzhou, Zhang, Qianying, Wang, Guohui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63
cites cdi_FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63
container_end_page
container_issue 6
container_start_page
container_title International journal of advanced robotic systems
container_volume 15
creator Zhao, Rongbo
Shi, Zhiping
Guan, Yong
Shao, Zhenzhou
Zhang, Qianying
Wang, Guohui
description The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints.
doi_str_mv 10.1177/1729881418818297
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2af810240e5f49e8a6ae1f55ec59c631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1729881418818297</sage_id><doaj_id>oai_doaj_org_article_2af810240e5f49e8a6ae1f55ec59c631</doaj_id><sourcerecordid>2178952232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63</originalsourceid><addsrcrecordid>eNp1kc9KxDAQxosoKOrdY8BzNUnTJjmK-GdRUETPYZpOtGu3WZNW8eY7-IY-iakrCoJzmBk-vvklw2TZHqMHjEl5yCTXSjHBUlJcy7Vsa5LySVv_6Wm1me3GOKdTSFpquZXNZ_0zhojkse1xAUNrSfTdOLS-J96R6oYEX_uBLKBvl2MHgw-R1BCxIckRbcAXMjygD68E-mZqyTU02H-8vV_AAyTLWC8TosPFTrbhoIu4-123s7vTk9vj8_zy6mx2fHSZW8HkkCuBvJFWMwl1UdSYilBOcXCydg4YKywtRFPKilstKltbXQkly6ppWK1sVWxnsxW38TA3y9AuILwaD635Eny4NxDSoh2aBFWMckGxdEKjggqQubJEW-pEYom1v2KlHZ5GjIOZ-zH06fuGM6l0yXnBk4uuXDb4GAO6n1cZNdOBzN8DpZF8NRLhHn-h__o_ASBPkRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178952232</pqid></control><display><type>article</type><title>Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem</title><source>SAGE Open Access</source><creator>Zhao, Rongbo ; Shi, Zhiping ; Guan, Yong ; Shao, Zhenzhou ; Zhang, Qianying ; Wang, Guohui</creator><creatorcontrib>Zhao, Rongbo ; Shi, Zhiping ; Guan, Yong ; Shao, Zhenzhou ; Zhang, Qianying ; Wang, Guohui</creatorcontrib><description>The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints.</description><identifier>ISSN: 1729-8806</identifier><identifier>EISSN: 1729-8814</identifier><identifier>DOI: 10.1177/1729881418818297</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Inverse kinematics ; Kinematics ; Manipulators ; Mathematical models ; Matrix theory ; Modelling ; Parameters ; Robot arms ; Robots ; Screw theory ; Software reviews</subject><ispartof>International journal of advanced robotic systems, 2018-11, Vol.15 (6)</ispartof><rights>The Author(s) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63</citedby><cites>FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63</cites><orcidid>0000-0003-2882-4987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1729881418818297$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1729881418818297$$EHTML$$P50$$Gsage$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21945,27830,27901,27902,44921,45309</link.rule.ids></links><search><creatorcontrib>Zhao, Rongbo</creatorcontrib><creatorcontrib>Shi, Zhiping</creatorcontrib><creatorcontrib>Guan, Yong</creatorcontrib><creatorcontrib>Shao, Zhenzhou</creatorcontrib><creatorcontrib>Zhang, Qianying</creatorcontrib><creatorcontrib>Wang, Guohui</creatorcontrib><title>Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem</title><title>International journal of advanced robotic systems</title><description>The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints.</description><subject>Algorithms</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Mathematical models</subject><subject>Matrix theory</subject><subject>Modelling</subject><subject>Parameters</subject><subject>Robot arms</subject><subject>Robots</subject><subject>Screw theory</subject><subject>Software reviews</subject><issn>1729-8806</issn><issn>1729-8814</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc9KxDAQxosoKOrdY8BzNUnTJjmK-GdRUETPYZpOtGu3WZNW8eY7-IY-iakrCoJzmBk-vvklw2TZHqMHjEl5yCTXSjHBUlJcy7Vsa5LySVv_6Wm1me3GOKdTSFpquZXNZ_0zhojkse1xAUNrSfTdOLS-J96R6oYEX_uBLKBvl2MHgw-R1BCxIckRbcAXMjygD68E-mZqyTU02H-8vV_AAyTLWC8TosPFTrbhoIu4-123s7vTk9vj8_zy6mx2fHSZW8HkkCuBvJFWMwl1UdSYilBOcXCydg4YKywtRFPKilstKltbXQkly6ppWK1sVWxnsxW38TA3y9AuILwaD635Eny4NxDSoh2aBFWMckGxdEKjggqQubJEW-pEYom1v2KlHZ5GjIOZ-zH06fuGM6l0yXnBk4uuXDb4GAO6n1cZNdOBzN8DpZF8NRLhHn-h__o_ASBPkRw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Zhao, Rongbo</creator><creator>Shi, Zhiping</creator><creator>Guan, Yong</creator><creator>Shao, Zhenzhou</creator><creator>Zhang, Qianying</creator><creator>Wang, Guohui</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2882-4987</orcidid></search><sort><creationdate>20181101</creationdate><title>Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem</title><author>Zhao, Rongbo ; Shi, Zhiping ; Guan, Yong ; Shao, Zhenzhou ; Zhang, Qianying ; Wang, Guohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Mathematical models</topic><topic>Matrix theory</topic><topic>Modelling</topic><topic>Parameters</topic><topic>Robot arms</topic><topic>Robots</topic><topic>Screw theory</topic><topic>Software reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Rongbo</creatorcontrib><creatorcontrib>Shi, Zhiping</creatorcontrib><creatorcontrib>Guan, Yong</creatorcontrib><creatorcontrib>Shao, Zhenzhou</creatorcontrib><creatorcontrib>Zhang, Qianying</creatorcontrib><creatorcontrib>Wang, Guohui</creatorcontrib><collection>SAGE Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of advanced robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Rongbo</au><au>Shi, Zhiping</au><au>Guan, Yong</au><au>Shao, Zhenzhou</au><au>Zhang, Qianying</au><au>Wang, Guohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem</atitle><jtitle>International journal of advanced robotic systems</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>15</volume><issue>6</issue><issn>1729-8806</issn><eissn>1729-8814</eissn><abstract>The traditional Denavit–Hatenberg method is a relatively mature method for modeling the kinematics of robots. However, it has an obvious drawback, in that the parameters of the Denavit–Hatenberg model are discontinuous, resulting in singularity when the adjacent joint axes are parallel or close to parallel. As a result, this model is not suitable for kinematic calibration. In this article, to avoid the problem of singularity, the product of exponentials method based on screw theory is employed for kinematics modeling. In addition, the inverse kinematics of the 6R robot manipulator is solved by adopting analytical, geometric, and algebraic methods combined with the Paden–Kahan subproblem as well as matrix theory. Moreover, the kinematic parameters of the Denavit–Hatenberg and the product of exponentials-based models are analyzed, and the singularity of the two models is illustrated. Finally, eight solutions of inverse kinematics are obtained, and the correctness and high level of accuracy of the algorithm proposed in this article are verified. This algorithm provides a reference for the inverse kinematics of robots with three adjacent parallel joints.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1729881418818297</doi><orcidid>https://orcid.org/0000-0003-2882-4987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1729-8806
ispartof International journal of advanced robotic systems, 2018-11, Vol.15 (6)
issn 1729-8806
1729-8814
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2af810240e5f49e8a6ae1f55ec59c631
source SAGE Open Access
subjects Algorithms
Inverse kinematics
Kinematics
Manipulators
Mathematical models
Matrix theory
Modelling
Parameters
Robot arms
Robots
Screw theory
Software reviews
title Inverse kinematic solution of 6R robot manipulators based on screw theory and the Paden–Kahan subproblem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20kinematic%20solution%20of%206R%20robot%20manipulators%20based%20on%20screw%20theory%20and%20the%20Paden%E2%80%93Kahan%20subproblem&rft.jtitle=International%20journal%20of%20advanced%20robotic%20systems&rft.au=Zhao,%20Rongbo&rft.date=2018-11-01&rft.volume=15&rft.issue=6&rft.issn=1729-8806&rft.eissn=1729-8814&rft_id=info:doi/10.1177/1729881418818297&rft_dat=%3Cproquest_doaj_%3E2178952232%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-84e2d7c917ab33be7ab48f82af7bffa113c034d5762c946cbc9648756dd1b8c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178952232&rft_id=info:pmid/&rft_sage_id=10.1177_1729881418818297&rfr_iscdi=true