Loading…

Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors

The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we p...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2020-05, Vol.9
Main Authors: Venkatakrishnan, A J, Puranik, Arjun, Anand, Akash, Zemmour, David, Yao, Xiang, Wu, Xiaoying, Chilaka, Ramakrishna, Murakowski, Dariusz K, Standish, Kristopher, Raghunathan, Bharathwaj, Wagner, Tyler, Garcia-Rivera, Enrique, Solomon, Hugo, Garg, Abhinav, Barve, Rakesh, Anyanwu-Ofili, Anuli, Khan, Najat, Soundararajan, Venky
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833
cites cdi_FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 9
creator Venkatakrishnan, A J
Puranik, Arjun
Anand, Akash
Zemmour, David
Yao, Xiang
Wu, Xiaoying
Chilaka, Ramakrishna
Murakowski, Dariusz K
Standish, Kristopher
Raghunathan, Bharathwaj
Wagner, Tyler
Garcia-Rivera, Enrique
Solomon, Hugo
Garg, Abhinav
Barve, Rakesh
Anyanwu-Ofili, Anuli
Khan, Najat
Soundararajan, Venky
description The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses.
doi_str_mv 10.7554/eLife.58040
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2b1a17f211964c8098b5cca7a0529c2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A630014741</galeid><doaj_id>oai_doaj_org_article_2b1a17f211964c8098b5cca7a0529c2a</doaj_id><sourcerecordid>A630014741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833</originalsourceid><addsrcrecordid>eNptkstv1DAQxiMEotXSE3cUiQsI7eJXYueCVFU8VqyEBD1wsxx7nHqV2MFO-vjv8e6W0kXYB4_s3_fZM56ieInRilcVew8bZ2FVCcTQk-KUoAotkWA_nz6KT4qzlLYoD86EwM3z4oQSVlNaV6fFzVcfbnowHZTpzk9XkFwqgy0xQuXg-t4FX7YuDGCcVn1pgp4H8FMq1dwdgqwpDcBYwu0YIaWdYozBut75bmelQwxeXbs4pzKChnEKMb0onlnVJzi7XxfF5aePlxdflptvn9cX55ulrrGYloIyMEJRwwnUltdEM6grYogBamttdNtwolBjW0sxwsJaVWeuwSanLyhdFOuDrQlqK8foBhXvZFBO7jdC7KSKk9M9SNJihbklGDc10wI1oq20VlyhijSaqOz14eA1zm2uh87ZR9UfmR6feHclu3AtOeWYEZ4N3twbxPBrhjTJwSUNfa88hDlJwhCvBMb54Yvi9T_oNszR50plijQMCYSqv1SncgLO25Dv1TtTeV5ThDDjDGdq9R8qTwOD08FD_io4Frw9EmRmgtupU3NKcv3j-zH77sDqGFKKYB_qgZHcdajcd6jcd2imXz0u4QP7px_pbziW4XE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429408005</pqid></control><display><type>article</type><title>Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors</title><source>PubMed (Medline)</source><source>Access via ProQuest (Open Access)</source><source>Coronavirus Research Database</source><creator>Venkatakrishnan, A J ; Puranik, Arjun ; Anand, Akash ; Zemmour, David ; Yao, Xiang ; Wu, Xiaoying ; Chilaka, Ramakrishna ; Murakowski, Dariusz K ; Standish, Kristopher ; Raghunathan, Bharathwaj ; Wagner, Tyler ; Garcia-Rivera, Enrique ; Solomon, Hugo ; Garg, Abhinav ; Barve, Rakesh ; Anyanwu-Ofili, Anuli ; Khan, Najat ; Soundararajan, Venky</creator><creatorcontrib>Venkatakrishnan, A J ; Puranik, Arjun ; Anand, Akash ; Zemmour, David ; Yao, Xiang ; Wu, Xiaoying ; Chilaka, Ramakrishna ; Murakowski, Dariusz K ; Standish, Kristopher ; Raghunathan, Bharathwaj ; Wagner, Tyler ; Garcia-Rivera, Enrique ; Solomon, Hugo ; Garg, Abhinav ; Barve, Rakesh ; Anyanwu-Ofili, Anuli ; Khan, Najat ; Soundararajan, Venky</creatorcontrib><description>The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.58040</identifier><identifier>PMID: 32463365</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>ACE2 ; Angiotensin-converting enzyme 2 ; Animals ; Artificial intelligence ; Artificial neural networks ; Betacoronavirus - genetics ; Betacoronavirus - metabolism ; Coronaviridae ; Coronavirus Infections - metabolism ; Coronavirus Infections - pathology ; Coronavirus Infections - virology ; Coronaviruses ; COVID-19 ; Datasets ; Disease transmission ; Enterocytes ; Epidemics ; Epithelial cells ; Feces ; Gene expression ; Gene Expression Profiling ; Health aspects ; Human Biology and Medicine ; Humans ; Keratinocytes ; Knowledge ; Knowledge Discovery ; Libraries, Medical ; Machine learning ; Medical research ; Mice ; Middle East respiratory syndrome ; natural language processing ; Neural networks ; Pandemics ; Pneumonia, Viral - metabolism ; Pneumonia, Viral - pathology ; Pneumonia, Viral - virology ; Proteins ; Proteomics ; Receptors, Coronavirus ; Receptors, Virus - chemistry ; Receptors, Virus - genetics ; Receptors, Virus - metabolism ; Respiratory diseases ; Ribonucleic acid ; RNA ; SARS-CoV-2 ; Severe acute respiratory syndrome coronavirus 2 ; single cell RNA-seq ; Small intestine ; Transcription</subject><ispartof>eLife, 2020-05, Vol.9</ispartof><rights>2020, Venkatakrishnan et al.</rights><rights>COPYRIGHT 2020 eLife Science Publications, Ltd.</rights><rights>2020, Venkatakrishnan et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020, Venkatakrishnan et al 2020 Venkatakrishnan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833</citedby><cites>FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833</cites><orcidid>0000-0002-9920-4980 ; 0000-0003-2819-3214 ; 0000-0001-7434-9211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2429408005/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2429408005?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32463365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkatakrishnan, A J</creatorcontrib><creatorcontrib>Puranik, Arjun</creatorcontrib><creatorcontrib>Anand, Akash</creatorcontrib><creatorcontrib>Zemmour, David</creatorcontrib><creatorcontrib>Yao, Xiang</creatorcontrib><creatorcontrib>Wu, Xiaoying</creatorcontrib><creatorcontrib>Chilaka, Ramakrishna</creatorcontrib><creatorcontrib>Murakowski, Dariusz K</creatorcontrib><creatorcontrib>Standish, Kristopher</creatorcontrib><creatorcontrib>Raghunathan, Bharathwaj</creatorcontrib><creatorcontrib>Wagner, Tyler</creatorcontrib><creatorcontrib>Garcia-Rivera, Enrique</creatorcontrib><creatorcontrib>Solomon, Hugo</creatorcontrib><creatorcontrib>Garg, Abhinav</creatorcontrib><creatorcontrib>Barve, Rakesh</creatorcontrib><creatorcontrib>Anyanwu-Ofili, Anuli</creatorcontrib><creatorcontrib>Khan, Najat</creatorcontrib><creatorcontrib>Soundararajan, Venky</creatorcontrib><title>Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors</title><title>eLife</title><addtitle>Elife</addtitle><description>The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses.</description><subject>ACE2</subject><subject>Angiotensin-converting enzyme 2</subject><subject>Animals</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Betacoronavirus - genetics</subject><subject>Betacoronavirus - metabolism</subject><subject>Coronaviridae</subject><subject>Coronavirus Infections - metabolism</subject><subject>Coronavirus Infections - pathology</subject><subject>Coronavirus Infections - virology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Disease transmission</subject><subject>Enterocytes</subject><subject>Epidemics</subject><subject>Epithelial cells</subject><subject>Feces</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Health aspects</subject><subject>Human Biology and Medicine</subject><subject>Humans</subject><subject>Keratinocytes</subject><subject>Knowledge</subject><subject>Knowledge Discovery</subject><subject>Libraries, Medical</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Mice</subject><subject>Middle East respiratory syndrome</subject><subject>natural language processing</subject><subject>Neural networks</subject><subject>Pandemics</subject><subject>Pneumonia, Viral - metabolism</subject><subject>Pneumonia, Viral - pathology</subject><subject>Pneumonia, Viral - virology</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Receptors, Coronavirus</subject><subject>Receptors, Virus - chemistry</subject><subject>Receptors, Virus - genetics</subject><subject>Receptors, Virus - metabolism</subject><subject>Respiratory diseases</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>SARS-CoV-2</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>single cell RNA-seq</subject><subject>Small intestine</subject><subject>Transcription</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstv1DAQxiMEotXSE3cUiQsI7eJXYueCVFU8VqyEBD1wsxx7nHqV2MFO-vjv8e6W0kXYB4_s3_fZM56ieInRilcVew8bZ2FVCcTQk-KUoAotkWA_nz6KT4qzlLYoD86EwM3z4oQSVlNaV6fFzVcfbnowHZTpzk9XkFwqgy0xQuXg-t4FX7YuDGCcVn1pgp4H8FMq1dwdgqwpDcBYwu0YIaWdYozBut75bmelQwxeXbs4pzKChnEKMb0onlnVJzi7XxfF5aePlxdflptvn9cX55ulrrGYloIyMEJRwwnUltdEM6grYogBamttdNtwolBjW0sxwsJaVWeuwSanLyhdFOuDrQlqK8foBhXvZFBO7jdC7KSKk9M9SNJihbklGDc10wI1oq20VlyhijSaqOz14eA1zm2uh87ZR9UfmR6feHclu3AtOeWYEZ4N3twbxPBrhjTJwSUNfa88hDlJwhCvBMb54Yvi9T_oNszR50plijQMCYSqv1SncgLO25Dv1TtTeV5ThDDjDGdq9R8qTwOD08FD_io4Frw9EmRmgtupU3NKcv3j-zH77sDqGFKKYB_qgZHcdajcd6jcd2imXz0u4QP7px_pbziW4XE</recordid><startdate>20200528</startdate><enddate>20200528</enddate><creator>Venkatakrishnan, A J</creator><creator>Puranik, Arjun</creator><creator>Anand, Akash</creator><creator>Zemmour, David</creator><creator>Yao, Xiang</creator><creator>Wu, Xiaoying</creator><creator>Chilaka, Ramakrishna</creator><creator>Murakowski, Dariusz K</creator><creator>Standish, Kristopher</creator><creator>Raghunathan, Bharathwaj</creator><creator>Wagner, Tyler</creator><creator>Garcia-Rivera, Enrique</creator><creator>Solomon, Hugo</creator><creator>Garg, Abhinav</creator><creator>Barve, Rakesh</creator><creator>Anyanwu-Ofili, Anuli</creator><creator>Khan, Najat</creator><creator>Soundararajan, Venky</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9920-4980</orcidid><orcidid>https://orcid.org/0000-0003-2819-3214</orcidid><orcidid>https://orcid.org/0000-0001-7434-9211</orcidid></search><sort><creationdate>20200528</creationdate><title>Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors</title><author>Venkatakrishnan, A J ; Puranik, Arjun ; Anand, Akash ; Zemmour, David ; Yao, Xiang ; Wu, Xiaoying ; Chilaka, Ramakrishna ; Murakowski, Dariusz K ; Standish, Kristopher ; Raghunathan, Bharathwaj ; Wagner, Tyler ; Garcia-Rivera, Enrique ; Solomon, Hugo ; Garg, Abhinav ; Barve, Rakesh ; Anyanwu-Ofili, Anuli ; Khan, Najat ; Soundararajan, Venky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ACE2</topic><topic>Angiotensin-converting enzyme 2</topic><topic>Animals</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Betacoronavirus - genetics</topic><topic>Betacoronavirus - metabolism</topic><topic>Coronaviridae</topic><topic>Coronavirus Infections - metabolism</topic><topic>Coronavirus Infections - pathology</topic><topic>Coronavirus Infections - virology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Disease transmission</topic><topic>Enterocytes</topic><topic>Epidemics</topic><topic>Epithelial cells</topic><topic>Feces</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Health aspects</topic><topic>Human Biology and Medicine</topic><topic>Humans</topic><topic>Keratinocytes</topic><topic>Knowledge</topic><topic>Knowledge Discovery</topic><topic>Libraries, Medical</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Mice</topic><topic>Middle East respiratory syndrome</topic><topic>natural language processing</topic><topic>Neural networks</topic><topic>Pandemics</topic><topic>Pneumonia, Viral - metabolism</topic><topic>Pneumonia, Viral - pathology</topic><topic>Pneumonia, Viral - virology</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Receptors, Coronavirus</topic><topic>Receptors, Virus - chemistry</topic><topic>Receptors, Virus - genetics</topic><topic>Receptors, Virus - metabolism</topic><topic>Respiratory diseases</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>SARS-CoV-2</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>single cell RNA-seq</topic><topic>Small intestine</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatakrishnan, A J</creatorcontrib><creatorcontrib>Puranik, Arjun</creatorcontrib><creatorcontrib>Anand, Akash</creatorcontrib><creatorcontrib>Zemmour, David</creatorcontrib><creatorcontrib>Yao, Xiang</creatorcontrib><creatorcontrib>Wu, Xiaoying</creatorcontrib><creatorcontrib>Chilaka, Ramakrishna</creatorcontrib><creatorcontrib>Murakowski, Dariusz K</creatorcontrib><creatorcontrib>Standish, Kristopher</creatorcontrib><creatorcontrib>Raghunathan, Bharathwaj</creatorcontrib><creatorcontrib>Wagner, Tyler</creatorcontrib><creatorcontrib>Garcia-Rivera, Enrique</creatorcontrib><creatorcontrib>Solomon, Hugo</creatorcontrib><creatorcontrib>Garg, Abhinav</creatorcontrib><creatorcontrib>Barve, Rakesh</creatorcontrib><creatorcontrib>Anyanwu-Ofili, Anuli</creatorcontrib><creatorcontrib>Khan, Najat</creatorcontrib><creatorcontrib>Soundararajan, Venky</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatakrishnan, A J</au><au>Puranik, Arjun</au><au>Anand, Akash</au><au>Zemmour, David</au><au>Yao, Xiang</au><au>Wu, Xiaoying</au><au>Chilaka, Ramakrishna</au><au>Murakowski, Dariusz K</au><au>Standish, Kristopher</au><au>Raghunathan, Bharathwaj</au><au>Wagner, Tyler</au><au>Garcia-Rivera, Enrique</au><au>Solomon, Hugo</au><au>Garg, Abhinav</au><au>Barve, Rakesh</au><au>Anyanwu-Ofili, Anuli</au><au>Khan, Najat</au><au>Soundararajan, Venky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2020-05-28</date><risdate>2020</risdate><volume>9</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>32463365</pmid><doi>10.7554/eLife.58040</doi><orcidid>https://orcid.org/0000-0002-9920-4980</orcidid><orcidid>https://orcid.org/0000-0003-2819-3214</orcidid><orcidid>https://orcid.org/0000-0001-7434-9211</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2020-05, Vol.9
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2b1a17f211964c8098b5cca7a0529c2a
source PubMed (Medline); Access via ProQuest (Open Access); Coronavirus Research Database
subjects ACE2
Angiotensin-converting enzyme 2
Animals
Artificial intelligence
Artificial neural networks
Betacoronavirus - genetics
Betacoronavirus - metabolism
Coronaviridae
Coronavirus Infections - metabolism
Coronavirus Infections - pathology
Coronavirus Infections - virology
Coronaviruses
COVID-19
Datasets
Disease transmission
Enterocytes
Epidemics
Epithelial cells
Feces
Gene expression
Gene Expression Profiling
Health aspects
Human Biology and Medicine
Humans
Keratinocytes
Knowledge
Knowledge Discovery
Libraries, Medical
Machine learning
Medical research
Mice
Middle East respiratory syndrome
natural language processing
Neural networks
Pandemics
Pneumonia, Viral - metabolism
Pneumonia, Viral - pathology
Pneumonia, Viral - virology
Proteins
Proteomics
Receptors, Coronavirus
Receptors, Virus - chemistry
Receptors, Virus - genetics
Receptors, Virus - metabolism
Respiratory diseases
Ribonucleic acid
RNA
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
single cell RNA-seq
Small intestine
Transcription
title Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20synthesis%20of%20100%20million%20biomedical%20documents%20augments%20the%20deep%20expression%20profiling%20of%20coronavirus%20receptors&rft.jtitle=eLife&rft.au=Venkatakrishnan,%20A%20J&rft.date=2020-05-28&rft.volume=9&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.58040&rft_dat=%3Cgale_doaj_%3EA630014741%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429408005&rft_id=info:pmid/32463365&rft_galeid=A630014741&rfr_iscdi=true