Loading…
Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors
The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we p...
Saved in:
Published in: | eLife 2020-05, Vol.9 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833 |
---|---|
cites | cdi_FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 9 |
creator | Venkatakrishnan, A J Puranik, Arjun Anand, Akash Zemmour, David Yao, Xiang Wu, Xiaoying Chilaka, Ramakrishna Murakowski, Dariusz K Standish, Kristopher Raghunathan, Bharathwaj Wagner, Tyler Garcia-Rivera, Enrique Solomon, Hugo Garg, Abhinav Barve, Rakesh Anyanwu-Ofili, Anuli Khan, Najat Soundararajan, Venky |
description | The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses. |
doi_str_mv | 10.7554/eLife.58040 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2b1a17f211964c8098b5cca7a0529c2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A630014741</galeid><doaj_id>oai_doaj_org_article_2b1a17f211964c8098b5cca7a0529c2a</doaj_id><sourcerecordid>A630014741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833</originalsourceid><addsrcrecordid>eNptkstv1DAQxiMEotXSE3cUiQsI7eJXYueCVFU8VqyEBD1wsxx7nHqV2MFO-vjv8e6W0kXYB4_s3_fZM56ieInRilcVew8bZ2FVCcTQk-KUoAotkWA_nz6KT4qzlLYoD86EwM3z4oQSVlNaV6fFzVcfbnowHZTpzk9XkFwqgy0xQuXg-t4FX7YuDGCcVn1pgp4H8FMq1dwdgqwpDcBYwu0YIaWdYozBut75bmelQwxeXbs4pzKChnEKMb0onlnVJzi7XxfF5aePlxdflptvn9cX55ulrrGYloIyMEJRwwnUltdEM6grYogBamttdNtwolBjW0sxwsJaVWeuwSanLyhdFOuDrQlqK8foBhXvZFBO7jdC7KSKk9M9SNJihbklGDc10wI1oq20VlyhijSaqOz14eA1zm2uh87ZR9UfmR6feHclu3AtOeWYEZ4N3twbxPBrhjTJwSUNfa88hDlJwhCvBMb54Yvi9T_oNszR50plijQMCYSqv1SncgLO25Dv1TtTeV5ThDDjDGdq9R8qTwOD08FD_io4Frw9EmRmgtupU3NKcv3j-zH77sDqGFKKYB_qgZHcdajcd6jcd2imXz0u4QP7px_pbziW4XE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429408005</pqid></control><display><type>article</type><title>Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors</title><source>PubMed (Medline)</source><source>Access via ProQuest (Open Access)</source><source>Coronavirus Research Database</source><creator>Venkatakrishnan, A J ; Puranik, Arjun ; Anand, Akash ; Zemmour, David ; Yao, Xiang ; Wu, Xiaoying ; Chilaka, Ramakrishna ; Murakowski, Dariusz K ; Standish, Kristopher ; Raghunathan, Bharathwaj ; Wagner, Tyler ; Garcia-Rivera, Enrique ; Solomon, Hugo ; Garg, Abhinav ; Barve, Rakesh ; Anyanwu-Ofili, Anuli ; Khan, Najat ; Soundararajan, Venky</creator><creatorcontrib>Venkatakrishnan, A J ; Puranik, Arjun ; Anand, Akash ; Zemmour, David ; Yao, Xiang ; Wu, Xiaoying ; Chilaka, Ramakrishna ; Murakowski, Dariusz K ; Standish, Kristopher ; Raghunathan, Bharathwaj ; Wagner, Tyler ; Garcia-Rivera, Enrique ; Solomon, Hugo ; Garg, Abhinav ; Barve, Rakesh ; Anyanwu-Ofili, Anuli ; Khan, Najat ; Soundararajan, Venky</creatorcontrib><description>The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.58040</identifier><identifier>PMID: 32463365</identifier><language>eng</language><publisher>England: eLife Science Publications, Ltd</publisher><subject>ACE2 ; Angiotensin-converting enzyme 2 ; Animals ; Artificial intelligence ; Artificial neural networks ; Betacoronavirus - genetics ; Betacoronavirus - metabolism ; Coronaviridae ; Coronavirus Infections - metabolism ; Coronavirus Infections - pathology ; Coronavirus Infections - virology ; Coronaviruses ; COVID-19 ; Datasets ; Disease transmission ; Enterocytes ; Epidemics ; Epithelial cells ; Feces ; Gene expression ; Gene Expression Profiling ; Health aspects ; Human Biology and Medicine ; Humans ; Keratinocytes ; Knowledge ; Knowledge Discovery ; Libraries, Medical ; Machine learning ; Medical research ; Mice ; Middle East respiratory syndrome ; natural language processing ; Neural networks ; Pandemics ; Pneumonia, Viral - metabolism ; Pneumonia, Viral - pathology ; Pneumonia, Viral - virology ; Proteins ; Proteomics ; Receptors, Coronavirus ; Receptors, Virus - chemistry ; Receptors, Virus - genetics ; Receptors, Virus - metabolism ; Respiratory diseases ; Ribonucleic acid ; RNA ; SARS-CoV-2 ; Severe acute respiratory syndrome coronavirus 2 ; single cell RNA-seq ; Small intestine ; Transcription</subject><ispartof>eLife, 2020-05, Vol.9</ispartof><rights>2020, Venkatakrishnan et al.</rights><rights>COPYRIGHT 2020 eLife Science Publications, Ltd.</rights><rights>2020, Venkatakrishnan et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020, Venkatakrishnan et al 2020 Venkatakrishnan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833</citedby><cites>FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833</cites><orcidid>0000-0002-9920-4980 ; 0000-0003-2819-3214 ; 0000-0001-7434-9211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2429408005/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2429408005?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32463365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkatakrishnan, A J</creatorcontrib><creatorcontrib>Puranik, Arjun</creatorcontrib><creatorcontrib>Anand, Akash</creatorcontrib><creatorcontrib>Zemmour, David</creatorcontrib><creatorcontrib>Yao, Xiang</creatorcontrib><creatorcontrib>Wu, Xiaoying</creatorcontrib><creatorcontrib>Chilaka, Ramakrishna</creatorcontrib><creatorcontrib>Murakowski, Dariusz K</creatorcontrib><creatorcontrib>Standish, Kristopher</creatorcontrib><creatorcontrib>Raghunathan, Bharathwaj</creatorcontrib><creatorcontrib>Wagner, Tyler</creatorcontrib><creatorcontrib>Garcia-Rivera, Enrique</creatorcontrib><creatorcontrib>Solomon, Hugo</creatorcontrib><creatorcontrib>Garg, Abhinav</creatorcontrib><creatorcontrib>Barve, Rakesh</creatorcontrib><creatorcontrib>Anyanwu-Ofili, Anuli</creatorcontrib><creatorcontrib>Khan, Najat</creatorcontrib><creatorcontrib>Soundararajan, Venky</creatorcontrib><title>Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors</title><title>eLife</title><addtitle>Elife</addtitle><description>The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses.</description><subject>ACE2</subject><subject>Angiotensin-converting enzyme 2</subject><subject>Animals</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Betacoronavirus - genetics</subject><subject>Betacoronavirus - metabolism</subject><subject>Coronaviridae</subject><subject>Coronavirus Infections - metabolism</subject><subject>Coronavirus Infections - pathology</subject><subject>Coronavirus Infections - virology</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Disease transmission</subject><subject>Enterocytes</subject><subject>Epidemics</subject><subject>Epithelial cells</subject><subject>Feces</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Health aspects</subject><subject>Human Biology and Medicine</subject><subject>Humans</subject><subject>Keratinocytes</subject><subject>Knowledge</subject><subject>Knowledge Discovery</subject><subject>Libraries, Medical</subject><subject>Machine learning</subject><subject>Medical research</subject><subject>Mice</subject><subject>Middle East respiratory syndrome</subject><subject>natural language processing</subject><subject>Neural networks</subject><subject>Pandemics</subject><subject>Pneumonia, Viral - metabolism</subject><subject>Pneumonia, Viral - pathology</subject><subject>Pneumonia, Viral - virology</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Receptors, Coronavirus</subject><subject>Receptors, Virus - chemistry</subject><subject>Receptors, Virus - genetics</subject><subject>Receptors, Virus - metabolism</subject><subject>Respiratory diseases</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>SARS-CoV-2</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>single cell RNA-seq</subject><subject>Small intestine</subject><subject>Transcription</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstv1DAQxiMEotXSE3cUiQsI7eJXYueCVFU8VqyEBD1wsxx7nHqV2MFO-vjv8e6W0kXYB4_s3_fZM56ieInRilcVew8bZ2FVCcTQk-KUoAotkWA_nz6KT4qzlLYoD86EwM3z4oQSVlNaV6fFzVcfbnowHZTpzk9XkFwqgy0xQuXg-t4FX7YuDGCcVn1pgp4H8FMq1dwdgqwpDcBYwu0YIaWdYozBut75bmelQwxeXbs4pzKChnEKMb0onlnVJzi7XxfF5aePlxdflptvn9cX55ulrrGYloIyMEJRwwnUltdEM6grYogBamttdNtwolBjW0sxwsJaVWeuwSanLyhdFOuDrQlqK8foBhXvZFBO7jdC7KSKk9M9SNJihbklGDc10wI1oq20VlyhijSaqOz14eA1zm2uh87ZR9UfmR6feHclu3AtOeWYEZ4N3twbxPBrhjTJwSUNfa88hDlJwhCvBMb54Yvi9T_oNszR50plijQMCYSqv1SncgLO25Dv1TtTeV5ThDDjDGdq9R8qTwOD08FD_io4Frw9EmRmgtupU3NKcv3j-zH77sDqGFKKYB_qgZHcdajcd6jcd2imXz0u4QP7px_pbziW4XE</recordid><startdate>20200528</startdate><enddate>20200528</enddate><creator>Venkatakrishnan, A J</creator><creator>Puranik, Arjun</creator><creator>Anand, Akash</creator><creator>Zemmour, David</creator><creator>Yao, Xiang</creator><creator>Wu, Xiaoying</creator><creator>Chilaka, Ramakrishna</creator><creator>Murakowski, Dariusz K</creator><creator>Standish, Kristopher</creator><creator>Raghunathan, Bharathwaj</creator><creator>Wagner, Tyler</creator><creator>Garcia-Rivera, Enrique</creator><creator>Solomon, Hugo</creator><creator>Garg, Abhinav</creator><creator>Barve, Rakesh</creator><creator>Anyanwu-Ofili, Anuli</creator><creator>Khan, Najat</creator><creator>Soundararajan, Venky</creator><general>eLife Science Publications, Ltd</general><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9920-4980</orcidid><orcidid>https://orcid.org/0000-0003-2819-3214</orcidid><orcidid>https://orcid.org/0000-0001-7434-9211</orcidid></search><sort><creationdate>20200528</creationdate><title>Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors</title><author>Venkatakrishnan, A J ; Puranik, Arjun ; Anand, Akash ; Zemmour, David ; Yao, Xiang ; Wu, Xiaoying ; Chilaka, Ramakrishna ; Murakowski, Dariusz K ; Standish, Kristopher ; Raghunathan, Bharathwaj ; Wagner, Tyler ; Garcia-Rivera, Enrique ; Solomon, Hugo ; Garg, Abhinav ; Barve, Rakesh ; Anyanwu-Ofili, Anuli ; Khan, Najat ; Soundararajan, Venky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ACE2</topic><topic>Angiotensin-converting enzyme 2</topic><topic>Animals</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Betacoronavirus - genetics</topic><topic>Betacoronavirus - metabolism</topic><topic>Coronaviridae</topic><topic>Coronavirus Infections - metabolism</topic><topic>Coronavirus Infections - pathology</topic><topic>Coronavirus Infections - virology</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Disease transmission</topic><topic>Enterocytes</topic><topic>Epidemics</topic><topic>Epithelial cells</topic><topic>Feces</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Health aspects</topic><topic>Human Biology and Medicine</topic><topic>Humans</topic><topic>Keratinocytes</topic><topic>Knowledge</topic><topic>Knowledge Discovery</topic><topic>Libraries, Medical</topic><topic>Machine learning</topic><topic>Medical research</topic><topic>Mice</topic><topic>Middle East respiratory syndrome</topic><topic>natural language processing</topic><topic>Neural networks</topic><topic>Pandemics</topic><topic>Pneumonia, Viral - metabolism</topic><topic>Pneumonia, Viral - pathology</topic><topic>Pneumonia, Viral - virology</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Receptors, Coronavirus</topic><topic>Receptors, Virus - chemistry</topic><topic>Receptors, Virus - genetics</topic><topic>Receptors, Virus - metabolism</topic><topic>Respiratory diseases</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>SARS-CoV-2</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>single cell RNA-seq</topic><topic>Small intestine</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatakrishnan, A J</creatorcontrib><creatorcontrib>Puranik, Arjun</creatorcontrib><creatorcontrib>Anand, Akash</creatorcontrib><creatorcontrib>Zemmour, David</creatorcontrib><creatorcontrib>Yao, Xiang</creatorcontrib><creatorcontrib>Wu, Xiaoying</creatorcontrib><creatorcontrib>Chilaka, Ramakrishna</creatorcontrib><creatorcontrib>Murakowski, Dariusz K</creatorcontrib><creatorcontrib>Standish, Kristopher</creatorcontrib><creatorcontrib>Raghunathan, Bharathwaj</creatorcontrib><creatorcontrib>Wagner, Tyler</creatorcontrib><creatorcontrib>Garcia-Rivera, Enrique</creatorcontrib><creatorcontrib>Solomon, Hugo</creatorcontrib><creatorcontrib>Garg, Abhinav</creatorcontrib><creatorcontrib>Barve, Rakesh</creatorcontrib><creatorcontrib>Anyanwu-Ofili, Anuli</creatorcontrib><creatorcontrib>Khan, Najat</creatorcontrib><creatorcontrib>Soundararajan, Venky</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatakrishnan, A J</au><au>Puranik, Arjun</au><au>Anand, Akash</au><au>Zemmour, David</au><au>Yao, Xiang</au><au>Wu, Xiaoying</au><au>Chilaka, Ramakrishna</au><au>Murakowski, Dariusz K</au><au>Standish, Kristopher</au><au>Raghunathan, Bharathwaj</au><au>Wagner, Tyler</au><au>Garcia-Rivera, Enrique</au><au>Solomon, Hugo</au><au>Garg, Abhinav</au><au>Barve, Rakesh</au><au>Anyanwu-Ofili, Anuli</au><au>Khan, Najat</au><au>Soundararajan, Venky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2020-05-28</date><risdate>2020</risdate><volume>9</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>The COVID-19 pandemic demands assimilation of all biomedical knowledge to decode mechanisms of pathogenesis. Despite the recent renaissance in neural networks, a platform for the real-time synthesis of the exponentially growing biomedical literature and deep omics insights is unavailable. Here, we present the nferX platform for dynamic inference from over 45 quadrillion possible conceptual associations from unstructured text, and triangulation with insights from single-cell RNA-sequencing, bulk RNA-seq and proteomics from diverse tissue types. A hypothesis-free profiling of ACE2 suggests tongue keratinocytes, olfactory epithelial cells, airway club cells and respiratory ciliated cells as potential reservoirs of the SARS-CoV-2 receptor. We find the gut as the putative hotspot of COVID-19, where a maturation correlated transcriptional signature is shared in small intestine enterocytes among coronavirus receptors (ACE2, DPP4, ANPEP). A holistic data science platform triangulating insights from structured and unstructured data holds potential for accelerating the generation of impactful biological insights and hypotheses.</abstract><cop>England</cop><pub>eLife Science Publications, Ltd</pub><pmid>32463365</pmid><doi>10.7554/eLife.58040</doi><orcidid>https://orcid.org/0000-0002-9920-4980</orcidid><orcidid>https://orcid.org/0000-0003-2819-3214</orcidid><orcidid>https://orcid.org/0000-0001-7434-9211</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2020-05, Vol.9 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2b1a17f211964c8098b5cca7a0529c2a |
source | PubMed (Medline); Access via ProQuest (Open Access); Coronavirus Research Database |
subjects | ACE2 Angiotensin-converting enzyme 2 Animals Artificial intelligence Artificial neural networks Betacoronavirus - genetics Betacoronavirus - metabolism Coronaviridae Coronavirus Infections - metabolism Coronavirus Infections - pathology Coronavirus Infections - virology Coronaviruses COVID-19 Datasets Disease transmission Enterocytes Epidemics Epithelial cells Feces Gene expression Gene Expression Profiling Health aspects Human Biology and Medicine Humans Keratinocytes Knowledge Knowledge Discovery Libraries, Medical Machine learning Medical research Mice Middle East respiratory syndrome natural language processing Neural networks Pandemics Pneumonia, Viral - metabolism Pneumonia, Viral - pathology Pneumonia, Viral - virology Proteins Proteomics Receptors, Coronavirus Receptors, Virus - chemistry Receptors, Virus - genetics Receptors, Virus - metabolism Respiratory diseases Ribonucleic acid RNA SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 single cell RNA-seq Small intestine Transcription |
title | Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20synthesis%20of%20100%20million%20biomedical%20documents%20augments%20the%20deep%20expression%20profiling%20of%20coronavirus%20receptors&rft.jtitle=eLife&rft.au=Venkatakrishnan,%20A%20J&rft.date=2020-05-28&rft.volume=9&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.58040&rft_dat=%3Cgale_doaj_%3EA630014741%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-834ed8a3d72e6f762c4e652d2de3f6cdcb972a09fbf31018ffa66f791d205833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2429408005&rft_id=info:pmid/32463365&rft_galeid=A630014741&rfr_iscdi=true |