Loading…
Design of a Compact Circularly Polarized Implantable Antenna for Capsule Endoscopy Systems
This research proposes a miniature circular polarization antenna used in a wireless capsule endoscopy system at 2.45 GHz for industrial, scientific, and medical bands. We propose a method of cutting a chamfer rectangular slot on a circular radiation patch and introducing a curved radiation structure...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-06, Vol.24 (12), p.3960 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research proposes a miniature circular polarization antenna used in a wireless capsule endoscopy system at 2.45 GHz for industrial, scientific, and medical bands. We propose a method of cutting a chamfer rectangular slot on a circular radiation patch and introducing a curved radiation structure into the centerline position of the chamfer rectangular slot, while a short-circuit probe is added to achieve miniaturization. Therefore, we significantly reduced the size of the antenna and made it exhibit circularly polarized radiation characteristics. A cross-slot is cut in the GND to enable the antenna to better cover the operating band while being able to meet the complex human environment. The effective axis ratio bandwidth is 120 MHz (2.38-2.50 GHz). Its size is π × 0.032λ
× 0.007λ
(where λ
is the free-space wavelength of at 2.4 GHz). In addition, the effect of different organs such as muscle, stomach, small intestine, and big intestine on the antenna when it was embedded into the wireless capsule endoscopy (WCE) system was further discussed, and the results proved that the WCE system has better robustness in different organs. The antenna's specific absorption rate can follow the IEEE Standard Safety Guidelines (IEEE C95.1-1999). A prototype is fabricated and measured. The experimental results are consistent with the simulation results. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24123960 |