Loading…

Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

•Fast and precise ground filtering is a key problem in point cloud understanding.•K-nearest neighbor search is usually a bottleneck algorithm of ground filtering.•Kd-tree and parallel processing boost the k-nearest neighbor search.•Principal component analysis and the RANSAC algorithm are potent too...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied earth observation and geoinformation 2021-12, Vol.105, p.102629, Article 102629
Main Authors: Diaz, Nelson, Gallo, Omar, Caceres, Jhon, Porras, Hernan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-5094eb0dbac09f814e7c5524f8e6891f264c16935680e3250b7423e531ac62c53
cites cdi_FETCH-LOGICAL-c439t-5094eb0dbac09f814e7c5524f8e6891f264c16935680e3250b7423e531ac62c53
container_end_page
container_issue
container_start_page 102629
container_title International journal of applied earth observation and geoinformation
container_volume 105
creator Diaz, Nelson
Gallo, Omar
Caceres, Jhon
Porras, Hernan
description •Fast and precise ground filtering is a key problem in point cloud understanding.•K-nearest neighbor search is usually a bottleneck algorithm of ground filtering.•Kd-tree and parallel processing boost the k-nearest neighbor search.•Principal component analysis and the RANSAC algorithm are potent tools to find flat regions.•A voxel structure might reduce the computation time or nearest neighbors. 3D modeling based on point clouds requires ground-filtering algorithms that separate ground from non-ground objects. This study presents two ground filtering algorithms. The first one is based on normal vectors. It has two variants depending on the procedure to compute the k-nearest neighbors. The second algorithm is based on transforming the cloud points into a voxel structure. To evaluate them, the two algorithms are compared according to their execution time, effectiveness and efficiency. Results show that the ground filtering algorithm based on the voxel structure is faster in terms of execution time, effectiveness, and efficiency than the normal vector ground filtering.
doi_str_mv 10.1016/j.jag.2021.102629
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2b1f8a4e47fd40c7a6f1363d602f78bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0303243421003366</els_id><doaj_id>oai_doaj_org_article_2b1f8a4e47fd40c7a6f1363d602f78bd</doaj_id><sourcerecordid>2675583028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-5094eb0dbac09f814e7c5524f8e6891f264c16935680e3250b7423e531ac62c53</originalsourceid><addsrcrecordid>eNp9Uctu1DAUjRBIlJYPYOdlWWTw245YoQraSiNVooPEznLs6-AoE0_tBKl_j4cgll3dh84593Ga5gPBO4KJ_DTuRjvsKKak1lTS7lVzQbSiraby5-uaC9m1mjP6tnlXyogxUUrqi8Z9Bzu1SzwCGnJaZ49CnBbIcR6QnYaU4_LriFJAbkqrR6cU56Ug657WmMGjtZyBB8gZypKjndDeFsjo0dl5rvH6sH_8eNW8CXYq8P5fvGx-fPt6uLlr9w-39zdf9q3jrFtagTsOPfa9dbgLmnBQTgjKgwapOxKo5I7IjgmpMTAqcK84ZSAYsU5SJ9hlc7_p-mRHc8rxaPOzSTaav42UB2PzEt0EhvYkaMuBq-A5dsrKQJhkXmIalO591bretE45Pa31OHOMxcE02RnSWgyVSgjNMNUVSjaoy6mUDOH_aILN2RwzmmqOOZtjNnMq5_PGgfqP3xGyKS7C7MDXt7qlLhxfYP8BdKiWWw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675583028</pqid></control><display><type>article</type><title>Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)</title><source>Elsevier</source><creator>Diaz, Nelson ; Gallo, Omar ; Caceres, Jhon ; Porras, Hernan</creator><creatorcontrib>Diaz, Nelson ; Gallo, Omar ; Caceres, Jhon ; Porras, Hernan</creatorcontrib><description>•Fast and precise ground filtering is a key problem in point cloud understanding.•K-nearest neighbor search is usually a bottleneck algorithm of ground filtering.•Kd-tree and parallel processing boost the k-nearest neighbor search.•Principal component analysis and the RANSAC algorithm are potent tools to find flat regions.•A voxel structure might reduce the computation time or nearest neighbors. 3D modeling based on point clouds requires ground-filtering algorithms that separate ground from non-ground objects. This study presents two ground filtering algorithms. The first one is based on normal vectors. It has two variants depending on the procedure to compute the k-nearest neighbors. The second algorithm is based on transforming the cloud points into a voxel structure. To evaluate them, the two algorithms are compared according to their execution time, effectiveness and efficiency. Results show that the ground filtering algorithm based on the voxel structure is faster in terms of execution time, effectiveness, and efficiency than the normal vector ground filtering.</description><identifier>ISSN: 1569-8432</identifier><identifier>EISSN: 1872-826X</identifier><identifier>DOI: 10.1016/j.jag.2021.102629</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>algorithms ; Ground filter ; Normal vector ; PCA ; scanners ; spatial data ; TLS ; Voxel</subject><ispartof>International journal of applied earth observation and geoinformation, 2021-12, Vol.105, p.102629, Article 102629</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-5094eb0dbac09f814e7c5524f8e6891f264c16935680e3250b7423e531ac62c53</citedby><cites>FETCH-LOGICAL-c439t-5094eb0dbac09f814e7c5524f8e6891f264c16935680e3250b7423e531ac62c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Diaz, Nelson</creatorcontrib><creatorcontrib>Gallo, Omar</creatorcontrib><creatorcontrib>Caceres, Jhon</creatorcontrib><creatorcontrib>Porras, Hernan</creatorcontrib><title>Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)</title><title>International journal of applied earth observation and geoinformation</title><description>•Fast and precise ground filtering is a key problem in point cloud understanding.•K-nearest neighbor search is usually a bottleneck algorithm of ground filtering.•Kd-tree and parallel processing boost the k-nearest neighbor search.•Principal component analysis and the RANSAC algorithm are potent tools to find flat regions.•A voxel structure might reduce the computation time or nearest neighbors. 3D modeling based on point clouds requires ground-filtering algorithms that separate ground from non-ground objects. This study presents two ground filtering algorithms. The first one is based on normal vectors. It has two variants depending on the procedure to compute the k-nearest neighbors. The second algorithm is based on transforming the cloud points into a voxel structure. To evaluate them, the two algorithms are compared according to their execution time, effectiveness and efficiency. Results show that the ground filtering algorithm based on the voxel structure is faster in terms of execution time, effectiveness, and efficiency than the normal vector ground filtering.</description><subject>algorithms</subject><subject>Ground filter</subject><subject>Normal vector</subject><subject>PCA</subject><subject>scanners</subject><subject>spatial data</subject><subject>TLS</subject><subject>Voxel</subject><issn>1569-8432</issn><issn>1872-826X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9Uctu1DAUjRBIlJYPYOdlWWTw245YoQraSiNVooPEznLs6-AoE0_tBKl_j4cgll3dh84593Ga5gPBO4KJ_DTuRjvsKKak1lTS7lVzQbSiraby5-uaC9m1mjP6tnlXyogxUUrqi8Z9Bzu1SzwCGnJaZ49CnBbIcR6QnYaU4_LriFJAbkqrR6cU56Ug657WmMGjtZyBB8gZypKjndDeFsjo0dl5rvH6sH_8eNW8CXYq8P5fvGx-fPt6uLlr9w-39zdf9q3jrFtagTsOPfa9dbgLmnBQTgjKgwapOxKo5I7IjgmpMTAqcK84ZSAYsU5SJ9hlc7_p-mRHc8rxaPOzSTaav42UB2PzEt0EhvYkaMuBq-A5dsrKQJhkXmIalO591bretE45Pa31OHOMxcE02RnSWgyVSgjNMNUVSjaoy6mUDOH_aILN2RwzmmqOOZtjNnMq5_PGgfqP3xGyKS7C7MDXt7qlLhxfYP8BdKiWWw</recordid><startdate>20211225</startdate><enddate>20211225</enddate><creator>Diaz, Nelson</creator><creator>Gallo, Omar</creator><creator>Caceres, Jhon</creator><creator>Porras, Hernan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>DOA</scope></search><sort><creationdate>20211225</creationdate><title>Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)</title><author>Diaz, Nelson ; Gallo, Omar ; Caceres, Jhon ; Porras, Hernan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-5094eb0dbac09f814e7c5524f8e6891f264c16935680e3250b7423e531ac62c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>algorithms</topic><topic>Ground filter</topic><topic>Normal vector</topic><topic>PCA</topic><topic>scanners</topic><topic>spatial data</topic><topic>TLS</topic><topic>Voxel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz, Nelson</creatorcontrib><creatorcontrib>Gallo, Omar</creatorcontrib><creatorcontrib>Caceres, Jhon</creatorcontrib><creatorcontrib>Porras, Hernan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of applied earth observation and geoinformation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaz, Nelson</au><au>Gallo, Omar</au><au>Caceres, Jhon</au><au>Porras, Hernan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)</atitle><jtitle>International journal of applied earth observation and geoinformation</jtitle><date>2021-12-25</date><risdate>2021</risdate><volume>105</volume><spage>102629</spage><pages>102629-</pages><artnum>102629</artnum><issn>1569-8432</issn><eissn>1872-826X</eissn><abstract>•Fast and precise ground filtering is a key problem in point cloud understanding.•K-nearest neighbor search is usually a bottleneck algorithm of ground filtering.•Kd-tree and parallel processing boost the k-nearest neighbor search.•Principal component analysis and the RANSAC algorithm are potent tools to find flat regions.•A voxel structure might reduce the computation time or nearest neighbors. 3D modeling based on point clouds requires ground-filtering algorithms that separate ground from non-ground objects. This study presents two ground filtering algorithms. The first one is based on normal vectors. It has two variants depending on the procedure to compute the k-nearest neighbors. The second algorithm is based on transforming the cloud points into a voxel structure. To evaluate them, the two algorithms are compared according to their execution time, effectiveness and efficiency. Results show that the ground filtering algorithm based on the voxel structure is faster in terms of execution time, effectiveness, and efficiency than the normal vector ground filtering.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jag.2021.102629</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1569-8432
ispartof International journal of applied earth observation and geoinformation, 2021-12, Vol.105, p.102629, Article 102629
issn 1569-8432
1872-826X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2b1f8a4e47fd40c7a6f1363d602f78bd
source Elsevier
subjects algorithms
Ground filter
Normal vector
PCA
scanners
spatial data
TLS
Voxel
title Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20ground%20filtering%20algorithm%20of%20cloud%20points%20acquired%20using%20Terrestrial%20Laser%20Scanner%20(TLS)&rft.jtitle=International%20journal%20of%20applied%20earth%20observation%20and%20geoinformation&rft.au=Diaz,%20Nelson&rft.date=2021-12-25&rft.volume=105&rft.spage=102629&rft.pages=102629-&rft.artnum=102629&rft.issn=1569-8432&rft.eissn=1872-826X&rft_id=info:doi/10.1016/j.jag.2021.102629&rft_dat=%3Cproquest_doaj_%3E2675583028%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-5094eb0dbac09f814e7c5524f8e6891f264c16935680e3250b7423e531ac62c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2675583028&rft_id=info:pmid/&rfr_iscdi=true