Loading…

Molecular and Genetic Aspects of Grain Number Determination in Rice ( Oryza sativa L.)

Rice grain yield is a complex trait determined by three components: panicle number, grain number per panicle (GNPP) and grain weight. GNPP is the major contributor to grain yield and is crucial for its improvement. GNPP is determined by a series of physiological and biochemical steps, including infl...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-01, Vol.22 (2), p.728
Main Authors: Yin, Changxi, Zhu, Yanchun, Li, Xuefei, Lin, Yongjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rice grain yield is a complex trait determined by three components: panicle number, grain number per panicle (GNPP) and grain weight. GNPP is the major contributor to grain yield and is crucial for its improvement. GNPP is determined by a series of physiological and biochemical steps, including inflorescence development, formation of rachis branches such as primary rachis branches and secondary rachis branches, and spikelet specialisation (lateral and terminal spikelets). The molecular genetic basis of GNPP determination is complex, and it is regulated by numerous interlinked genes. In this review, panicle development and the determination of GNPP is described briefly, and GNPP-related genes that influence its determination are categorised according to their regulatory mechanisms. We introduce genes related to rachis branch development and their regulation of GNPP, genes related to phase transition (from rachis branch meristem to spikelet meristem) and their regulation of GNPP, and genes related to spikelet specialisation and their regulation of GNPP. In addition, we describe other GNPP-related genes and their regulation of GNPP. Research on GNPP determination suggests that it is possible to cultivate rice varieties with higher grain yield by modifying GNPP-related genes.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22020728