Loading…

An Encrypted Speech Retrieval Method Based on Deep Perceptual Hashing and CNN-BiLSTM

Since convolutional neural network (CNN) can only extract local features, and long shortterm memory (LSTM) neural network model has a large number of learning calculations, a long processing time and an obvious degree of information loss as the length of speech increases. Utilizing the characteristi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020-01, Vol.8, p.1-1
Main Authors: Zhang, Qiuyu, Li, Yuzhou, Hu, Yinjie, Zhao, Xuejiao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-bef5c03889e5bc9e8532c5f14e305b3abb77489cf266b7b14e3b0a894f1ef0993
cites cdi_FETCH-LOGICAL-c408t-bef5c03889e5bc9e8532c5f14e305b3abb77489cf266b7b14e3b0a894f1ef0993
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Zhang, Qiuyu
Li, Yuzhou
Hu, Yinjie
Zhao, Xuejiao
description Since convolutional neural network (CNN) can only extract local features, and long shortterm memory (LSTM) neural network model has a large number of learning calculations, a long processing time and an obvious degree of information loss as the length of speech increases. Utilizing the characteristics of autonomous feature extraction in deep learning, CNN and bidirectional long short-term memory (BiLSTM) network are combined to present an encrypted speech retrieval method based on deep perceptual hashing and CNN-BiLSTM. Firstly, the proposed method extracts the Log-Mel Spectrogram/MFCC features of the original speech and enters the CNN and BiLSTM networks in turn for model training. Secondly, we use the trained fusion network model to learn the deep perceptual feature and generate deep perceptual hashing sequences. Finally, the normalized Hamming distance algorithm is used for matching retrieval. In order to protect the speech security in the cloud, a speech encryption algorithm based on a 4D hyperchaotic system is proposed. The experimental results show that the proposed method has good discrimination, robustness, recall and precision compared with the existing methods, and it has good retrieval efficiency and retrieval accuracy for longer speech. Meanwhile, the proposed speech encryption algorithm has a high key space to resist exhaustive attacks.
doi_str_mv 10.1109/ACCESS.2020.3015876
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2b3d2c6822bd46829ff2e9727e94a994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9165111</ieee_id><doaj_id>oai_doaj_org_article_2b3d2c6822bd46829ff2e9727e94a994</doaj_id><sourcerecordid>2454642621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bef5c03889e5bc9e8532c5f14e305b3abb77489cf266b7b14e3b0a894f1ef0993</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOALuFjinOJ37GMJ5SGVh2g5W7azpqlKEpwUqX-PSxBiL7Oa3ZldabLsguAJIVhfTctytlhMKKZ4wjARqpAH2QklUudMMHn4rz_Ozvt-jVOpRIniJFtOGzRrfNx1A1Ro0QH4FXqFIdbwZTfoEYZVW6Fr26dp26AbgA69QPTQDds0v7f9qm7ekW0qVD495df1fLF8PMuOgt30cP6Lp9nb7WxZ3ufz57uHcjrPPcdqyB0E4TFTSoNwXoMSjHoRCAeGhWPWuaLgSvtApXSF2_MOW6V5IBCw1uw0exh9q9auTRfrDxt3prW1-SHa-G5sHGq_AUMdq6iXilJX8QQ6BAq6oAVobrXmyety9Opi-7mFfjDrdhub9L6hXHDJqaQkbbFxy8e27yOEv6sEm30aZkzD7NMwv2kk1cWoqgHgT6GJFIQQ9g1jZYNG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454642621</pqid></control><display><type>article</type><title>An Encrypted Speech Retrieval Method Based on Deep Perceptual Hashing and CNN-BiLSTM</title><source>IEEE Xplore Open Access Journals</source><creator>Zhang, Qiuyu ; Li, Yuzhou ; Hu, Yinjie ; Zhao, Xuejiao</creator><creatorcontrib>Zhang, Qiuyu ; Li, Yuzhou ; Hu, Yinjie ; Zhao, Xuejiao</creatorcontrib><description>Since convolutional neural network (CNN) can only extract local features, and long shortterm memory (LSTM) neural network model has a large number of learning calculations, a long processing time and an obvious degree of information loss as the length of speech increases. Utilizing the characteristics of autonomous feature extraction in deep learning, CNN and bidirectional long short-term memory (BiLSTM) network are combined to present an encrypted speech retrieval method based on deep perceptual hashing and CNN-BiLSTM. Firstly, the proposed method extracts the Log-Mel Spectrogram/MFCC features of the original speech and enters the CNN and BiLSTM networks in turn for model training. Secondly, we use the trained fusion network model to learn the deep perceptual feature and generate deep perceptual hashing sequences. Finally, the normalized Hamming distance algorithm is used for matching retrieval. In order to protect the speech security in the cloud, a speech encryption algorithm based on a 4D hyperchaotic system is proposed. The experimental results show that the proposed method has good discrimination, robustness, recall and precision compared with the existing methods, and it has good retrieval efficiency and retrieval accuracy for longer speech. Meanwhile, the proposed speech encryption algorithm has a high key space to resist exhaustive attacks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3015876</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>4D hyperchaotic system ; Algorithms ; Artificial neural networks ; CNN-BiLSTM ; Deep perceptual hashing ; Encrypted speech retrieval ; Encryption ; Feature extraction ; Filter banks ; Hidden Markov models ; Machine learning ; Mel frequency cepstral coefficient ; Neural networks ; Retrieval ; Short term ; Spectrogram ; Speech ; Speech feature extraction</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bef5c03889e5bc9e8532c5f14e305b3abb77489cf266b7b14e3b0a894f1ef0993</citedby><cites>FETCH-LOGICAL-c408t-bef5c03889e5bc9e8532c5f14e305b3abb77489cf266b7b14e3b0a894f1ef0993</cites><orcidid>0000-0003-1488-388X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9165111$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Qiuyu</creatorcontrib><creatorcontrib>Li, Yuzhou</creatorcontrib><creatorcontrib>Hu, Yinjie</creatorcontrib><creatorcontrib>Zhao, Xuejiao</creatorcontrib><title>An Encrypted Speech Retrieval Method Based on Deep Perceptual Hashing and CNN-BiLSTM</title><title>IEEE access</title><addtitle>Access</addtitle><description>Since convolutional neural network (CNN) can only extract local features, and long shortterm memory (LSTM) neural network model has a large number of learning calculations, a long processing time and an obvious degree of information loss as the length of speech increases. Utilizing the characteristics of autonomous feature extraction in deep learning, CNN and bidirectional long short-term memory (BiLSTM) network are combined to present an encrypted speech retrieval method based on deep perceptual hashing and CNN-BiLSTM. Firstly, the proposed method extracts the Log-Mel Spectrogram/MFCC features of the original speech and enters the CNN and BiLSTM networks in turn for model training. Secondly, we use the trained fusion network model to learn the deep perceptual feature and generate deep perceptual hashing sequences. Finally, the normalized Hamming distance algorithm is used for matching retrieval. In order to protect the speech security in the cloud, a speech encryption algorithm based on a 4D hyperchaotic system is proposed. The experimental results show that the proposed method has good discrimination, robustness, recall and precision compared with the existing methods, and it has good retrieval efficiency and retrieval accuracy for longer speech. Meanwhile, the proposed speech encryption algorithm has a high key space to resist exhaustive attacks.</description><subject>4D hyperchaotic system</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>CNN-BiLSTM</subject><subject>Deep perceptual hashing</subject><subject>Encrypted speech retrieval</subject><subject>Encryption</subject><subject>Feature extraction</subject><subject>Filter banks</subject><subject>Hidden Markov models</subject><subject>Machine learning</subject><subject>Mel frequency cepstral coefficient</subject><subject>Neural networks</subject><subject>Retrieval</subject><subject>Short term</subject><subject>Spectrogram</subject><subject>Speech</subject><subject>Speech feature extraction</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOALuFjinOJ37GMJ5SGVh2g5W7azpqlKEpwUqX-PSxBiL7Oa3ZldabLsguAJIVhfTctytlhMKKZ4wjARqpAH2QklUudMMHn4rz_Ozvt-jVOpRIniJFtOGzRrfNx1A1Ro0QH4FXqFIdbwZTfoEYZVW6Fr26dp26AbgA69QPTQDds0v7f9qm7ekW0qVD495df1fLF8PMuOgt30cP6Lp9nb7WxZ3ufz57uHcjrPPcdqyB0E4TFTSoNwXoMSjHoRCAeGhWPWuaLgSvtApXSF2_MOW6V5IBCw1uw0exh9q9auTRfrDxt3prW1-SHa-G5sHGq_AUMdq6iXilJX8QQ6BAq6oAVobrXmyety9Opi-7mFfjDrdhub9L6hXHDJqaQkbbFxy8e27yOEv6sEm30aZkzD7NMwv2kk1cWoqgHgT6GJFIQQ9g1jZYNG</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhang, Qiuyu</creator><creator>Li, Yuzhou</creator><creator>Hu, Yinjie</creator><creator>Zhao, Xuejiao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1488-388X</orcidid></search><sort><creationdate>20200101</creationdate><title>An Encrypted Speech Retrieval Method Based on Deep Perceptual Hashing and CNN-BiLSTM</title><author>Zhang, Qiuyu ; Li, Yuzhou ; Hu, Yinjie ; Zhao, Xuejiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bef5c03889e5bc9e8532c5f14e305b3abb77489cf266b7b14e3b0a894f1ef0993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>4D hyperchaotic system</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>CNN-BiLSTM</topic><topic>Deep perceptual hashing</topic><topic>Encrypted speech retrieval</topic><topic>Encryption</topic><topic>Feature extraction</topic><topic>Filter banks</topic><topic>Hidden Markov models</topic><topic>Machine learning</topic><topic>Mel frequency cepstral coefficient</topic><topic>Neural networks</topic><topic>Retrieval</topic><topic>Short term</topic><topic>Spectrogram</topic><topic>Speech</topic><topic>Speech feature extraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiuyu</creatorcontrib><creatorcontrib>Li, Yuzhou</creatorcontrib><creatorcontrib>Hu, Yinjie</creatorcontrib><creatorcontrib>Zhao, Xuejiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiuyu</au><au>Li, Yuzhou</au><au>Hu, Yinjie</au><au>Zhao, Xuejiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Encrypted Speech Retrieval Method Based on Deep Perceptual Hashing and CNN-BiLSTM</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Since convolutional neural network (CNN) can only extract local features, and long shortterm memory (LSTM) neural network model has a large number of learning calculations, a long processing time and an obvious degree of information loss as the length of speech increases. Utilizing the characteristics of autonomous feature extraction in deep learning, CNN and bidirectional long short-term memory (BiLSTM) network are combined to present an encrypted speech retrieval method based on deep perceptual hashing and CNN-BiLSTM. Firstly, the proposed method extracts the Log-Mel Spectrogram/MFCC features of the original speech and enters the CNN and BiLSTM networks in turn for model training. Secondly, we use the trained fusion network model to learn the deep perceptual feature and generate deep perceptual hashing sequences. Finally, the normalized Hamming distance algorithm is used for matching retrieval. In order to protect the speech security in the cloud, a speech encryption algorithm based on a 4D hyperchaotic system is proposed. The experimental results show that the proposed method has good discrimination, robustness, recall and precision compared with the existing methods, and it has good retrieval efficiency and retrieval accuracy for longer speech. Meanwhile, the proposed speech encryption algorithm has a high key space to resist exhaustive attacks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3015876</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1488-388X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2b3d2c6822bd46829ff2e9727e94a994
source IEEE Xplore Open Access Journals
subjects 4D hyperchaotic system
Algorithms
Artificial neural networks
CNN-BiLSTM
Deep perceptual hashing
Encrypted speech retrieval
Encryption
Feature extraction
Filter banks
Hidden Markov models
Machine learning
Mel frequency cepstral coefficient
Neural networks
Retrieval
Short term
Spectrogram
Speech
Speech feature extraction
title An Encrypted Speech Retrieval Method Based on Deep Perceptual Hashing and CNN-BiLSTM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A42%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Encrypted%20Speech%20Retrieval%20Method%20Based%20on%20Deep%20Perceptual%20Hashing%20and%20CNN-BiLSTM&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Qiuyu&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3015876&rft_dat=%3Cproquest_doaj_%3E2454642621%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-bef5c03889e5bc9e8532c5f14e305b3abb77489cf266b7b14e3b0a894f1ef0993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454642621&rft_id=info:pmid/&rft_ieee_id=9165111&rfr_iscdi=true