Loading…
Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex
Sequences of spiking activity have been heavily implicated as potential substrates of memory formation and retrieval across many species. A parallel line of recent evidence also asserts that sequential activity may arise from and be constrained by pre-existing network structure. Here we reconcile th...
Saved in:
Published in: | Nature communications 2023-08, Vol.14 (1), p.4723-12, Article 4723 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-835ca10048a754f65e50c4831558ef0937e0f05d1415d11de69d17c9d7186b7c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c541t-835ca10048a754f65e50c4831558ef0937e0f05d1415d11de69d17c9d7186b7c3 |
container_end_page | 12 |
container_issue | 1 |
container_start_page | 4723 |
container_title | Nature communications |
container_volume | 14 |
creator | Vaz, Alex P. Wittig, John H. Inati, Sara K. Zaghloul, Kareem A. |
description | Sequences of spiking activity have been heavily implicated as potential substrates of memory formation and retrieval across many species. A parallel line of recent evidence also asserts that sequential activity may arise from and be constrained by pre-existing network structure. Here we reconcile these two lines of research in the human brain by measuring single unit spiking sequences in the temporal lobe cortex as participants perform an episodic memory task. We find the presence of an average backbone spiking sequence identified during pre-task rest that is stable over time and different cognitive states. We further demonstrate that these backbone sequences are composed of both rigid and flexible sequence elements, and that flexible elements within these sequences serve to promote memory specificity when forming and retrieving new memories. These results support the hypothesis that pre-existing network dynamics serve as a scaffold for ongoing neural activity in the human cortex.
Sequential neural spiking activity is a potential substrate for learning and memory across species. Here, the authors showed spiking in the human cortex forms an average backbone sequence, and flexibility around this backbone is associated with cognition. |
doi_str_mv | 10.1038/s41467-023-40440-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2b4fe4aebb6e441ba4668fddd1e0f4a2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2b4fe4aebb6e441ba4668fddd1e0f4a2</doaj_id><sourcerecordid>2847161191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-835ca10048a754f65e50c4831558ef0937e0f05d1415d11de69d17c9d7186b7c3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CALHHhQMCTjGPvCdGKj0qVuMANyZrYk23arL3YCaL_HrPblpYDPngs-51n7PFbVc9BvgHZmrcZATtdy6atUSLKWj2qDhuJUINu2sf31gfVcc6Xsox2BQbxaXXQaqVkY9Rh9f2E3FUfA4u8Ha_GsBaZfywcHAvKgkRPecxiiElsE28nun4tbiMFLzwPtEyzyDPNnMUYxMWyoSBcTDP_elY9GWjKfHwTj6pvHz98Pf1cn3_5dHb6_rx2CmGuTascgZRoSCscOsVKOjQtKGV4kKtWsxyk8oBQJvDcrTxot_IaTNdr1x5VZ3uuj3Rpt2ncULq2kUa724hpbSnNo5vYNj0OjMR93zEi9IRdZwbvPZQaSE1hvduztku_Ye84zImmB9CHJ2G8sOv404JE2RnAQnh1Q0ixtDLPdjNmx9NEgeOSbWNQa9RoZJG-_Ed6GZcUSq92KugAVlBUzV7lUsw58XB3G5D2jxns3gy2mMHuzGBVSXpx_x13KbdfXwTtXpDLUVhz-lv7P9jfrz2-xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847161191</pqid></control><display><type>article</type><title>Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Vaz, Alex P. ; Wittig, John H. ; Inati, Sara K. ; Zaghloul, Kareem A.</creator><creatorcontrib>Vaz, Alex P. ; Wittig, John H. ; Inati, Sara K. ; Zaghloul, Kareem A.</creatorcontrib><description>Sequences of spiking activity have been heavily implicated as potential substrates of memory formation and retrieval across many species. A parallel line of recent evidence also asserts that sequential activity may arise from and be constrained by pre-existing network structure. Here we reconcile these two lines of research in the human brain by measuring single unit spiking sequences in the temporal lobe cortex as participants perform an episodic memory task. We find the presence of an average backbone spiking sequence identified during pre-task rest that is stable over time and different cognitive states. We further demonstrate that these backbone sequences are composed of both rigid and flexible sequence elements, and that flexible elements within these sequences serve to promote memory specificity when forming and retrieving new memories. These results support the hypothesis that pre-existing network dynamics serve as a scaffold for ongoing neural activity in the human cortex.
Sequential neural spiking activity is a potential substrate for learning and memory across species. Here, the authors showed spiking in the human cortex forms an average backbone sequence, and flexibility around this backbone is associated with cognition.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-40440-5</identifier><identifier>PMID: 37550285</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/1595/1554 ; 631/378/1595/2167 ; 9/26 ; 9/97 ; Brain ; Brain Mapping ; Cognition ; Cognitive ability ; Firing pattern ; Humanities and Social Sciences ; Humans ; Memory ; Memory tasks ; Memory, Episodic ; Mental task performance ; multidisciplinary ; Rest ; Science ; Science (multidisciplinary) ; Spiking ; Substrates ; Temporal Lobe</subject><ispartof>Nature communications, 2023-08, Vol.14 (1), p.4723-12, Article 4723</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023</rights><rights>2023. Springer Nature Limited.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-835ca10048a754f65e50c4831558ef0937e0f05d1415d11de69d17c9d7186b7c3</citedby><cites>FETCH-LOGICAL-c541t-835ca10048a754f65e50c4831558ef0937e0f05d1415d11de69d17c9d7186b7c3</cites><orcidid>0000-0001-8820-7927 ; 0000-0002-7587-5085 ; 0000-0001-8575-3578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2847161191/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2847161191?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37550285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaz, Alex P.</creatorcontrib><creatorcontrib>Wittig, John H.</creatorcontrib><creatorcontrib>Inati, Sara K.</creatorcontrib><creatorcontrib>Zaghloul, Kareem A.</creatorcontrib><title>Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Sequences of spiking activity have been heavily implicated as potential substrates of memory formation and retrieval across many species. A parallel line of recent evidence also asserts that sequential activity may arise from and be constrained by pre-existing network structure. Here we reconcile these two lines of research in the human brain by measuring single unit spiking sequences in the temporal lobe cortex as participants perform an episodic memory task. We find the presence of an average backbone spiking sequence identified during pre-task rest that is stable over time and different cognitive states. We further demonstrate that these backbone sequences are composed of both rigid and flexible sequence elements, and that flexible elements within these sequences serve to promote memory specificity when forming and retrieving new memories. These results support the hypothesis that pre-existing network dynamics serve as a scaffold for ongoing neural activity in the human cortex.
Sequential neural spiking activity is a potential substrate for learning and memory across species. Here, the authors showed spiking in the human cortex forms an average backbone sequence, and flexibility around this backbone is associated with cognition.</description><subject>631/378/1595/1554</subject><subject>631/378/1595/2167</subject><subject>9/26</subject><subject>9/97</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Cognition</subject><subject>Cognitive ability</subject><subject>Firing pattern</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Memory</subject><subject>Memory tasks</subject><subject>Memory, Episodic</subject><subject>Mental task performance</subject><subject>multidisciplinary</subject><subject>Rest</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spiking</subject><subject>Substrates</subject><subject>Temporal Lobe</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CALHHhQMCTjGPvCdGKj0qVuMANyZrYk23arL3YCaL_HrPblpYDPngs-51n7PFbVc9BvgHZmrcZATtdy6atUSLKWj2qDhuJUINu2sf31gfVcc6Xsox2BQbxaXXQaqVkY9Rh9f2E3FUfA4u8Ha_GsBaZfywcHAvKgkRPecxiiElsE28nun4tbiMFLzwPtEyzyDPNnMUYxMWyoSBcTDP_elY9GWjKfHwTj6pvHz98Pf1cn3_5dHb6_rx2CmGuTascgZRoSCscOsVKOjQtKGV4kKtWsxyk8oBQJvDcrTxot_IaTNdr1x5VZ3uuj3Rpt2ncULq2kUa724hpbSnNo5vYNj0OjMR93zEi9IRdZwbvPZQaSE1hvduztku_Ye84zImmB9CHJ2G8sOv404JE2RnAQnh1Q0ixtDLPdjNmx9NEgeOSbWNQa9RoZJG-_Ed6GZcUSq92KugAVlBUzV7lUsw58XB3G5D2jxns3gy2mMHuzGBVSXpx_x13KbdfXwTtXpDLUVhz-lv7P9jfrz2-xw</recordid><startdate>20230807</startdate><enddate>20230807</enddate><creator>Vaz, Alex P.</creator><creator>Wittig, John H.</creator><creator>Inati, Sara K.</creator><creator>Zaghloul, Kareem A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8820-7927</orcidid><orcidid>https://orcid.org/0000-0002-7587-5085</orcidid><orcidid>https://orcid.org/0000-0001-8575-3578</orcidid></search><sort><creationdate>20230807</creationdate><title>Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex</title><author>Vaz, Alex P. ; Wittig, John H. ; Inati, Sara K. ; Zaghloul, Kareem A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-835ca10048a754f65e50c4831558ef0937e0f05d1415d11de69d17c9d7186b7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>631/378/1595/1554</topic><topic>631/378/1595/2167</topic><topic>9/26</topic><topic>9/97</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Cognition</topic><topic>Cognitive ability</topic><topic>Firing pattern</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Memory</topic><topic>Memory tasks</topic><topic>Memory, Episodic</topic><topic>Mental task performance</topic><topic>multidisciplinary</topic><topic>Rest</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spiking</topic><topic>Substrates</topic><topic>Temporal Lobe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaz, Alex P.</creatorcontrib><creatorcontrib>Wittig, John H.</creatorcontrib><creatorcontrib>Inati, Sara K.</creatorcontrib><creatorcontrib>Zaghloul, Kareem A.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaz, Alex P.</au><au>Wittig, John H.</au><au>Inati, Sara K.</au><au>Zaghloul, Kareem A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2023-08-07</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>4723</spage><epage>12</epage><pages>4723-12</pages><artnum>4723</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Sequences of spiking activity have been heavily implicated as potential substrates of memory formation and retrieval across many species. A parallel line of recent evidence also asserts that sequential activity may arise from and be constrained by pre-existing network structure. Here we reconcile these two lines of research in the human brain by measuring single unit spiking sequences in the temporal lobe cortex as participants perform an episodic memory task. We find the presence of an average backbone spiking sequence identified during pre-task rest that is stable over time and different cognitive states. We further demonstrate that these backbone sequences are composed of both rigid and flexible sequence elements, and that flexible elements within these sequences serve to promote memory specificity when forming and retrieving new memories. These results support the hypothesis that pre-existing network dynamics serve as a scaffold for ongoing neural activity in the human cortex.
Sequential neural spiking activity is a potential substrate for learning and memory across species. Here, the authors showed spiking in the human cortex forms an average backbone sequence, and flexibility around this backbone is associated with cognition.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37550285</pmid><doi>10.1038/s41467-023-40440-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8820-7927</orcidid><orcidid>https://orcid.org/0000-0002-7587-5085</orcidid><orcidid>https://orcid.org/0000-0001-8575-3578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-08, Vol.14 (1), p.4723-12, Article 4723 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2b4fe4aebb6e441ba4668fddd1e0f4a2 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access); Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/378/1595/1554 631/378/1595/2167 9/26 9/97 Brain Brain Mapping Cognition Cognitive ability Firing pattern Humanities and Social Sciences Humans Memory Memory tasks Memory, Episodic Mental task performance multidisciplinary Rest Science Science (multidisciplinary) Spiking Substrates Temporal Lobe |
title | Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backbone%20spiking%20sequence%20as%20a%20basis%20for%20preplay,%20replay,%20and%20default%20states%20in%20human%20cortex&rft.jtitle=Nature%20communications&rft.au=Vaz,%20Alex%20P.&rft.date=2023-08-07&rft.volume=14&rft.issue=1&rft.spage=4723&rft.epage=12&rft.pages=4723-12&rft.artnum=4723&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-40440-5&rft_dat=%3Cproquest_doaj_%3E2847161191%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-835ca10048a754f65e50c4831558ef0937e0f05d1415d11de69d17c9d7186b7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847161191&rft_id=info:pmid/37550285&rfr_iscdi=true |