Loading…

Periodic Co/Nb pseudo spin valve for cryogenic memory

We present a study of magnetic structures with controllable effective exchange energy for Josephson switches and memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on t...

Full description

Saved in:
Bibliographic Details
Published in:Beilstein journal of nanotechnology 2019, Vol.10 (1), p.833-839
Main Authors: Klenov, Nikolay, Khaydukov, Yury, Bakurskiy, Sergey, Morari, Roman, Soloviev, Igor, Boian, Vladimir, Keller, Thomas, Kupriyanov, Mikhail, Sidorenko, Anatoli, Keimer, Bernhard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-6300b6300fa1cbc35f8fbf2bb0d8e0db76ccc121f3265e5174101c59ead13773
cites cdi_FETCH-LOGICAL-c478t-6300b6300fa1cbc35f8fbf2bb0d8e0db76ccc121f3265e5174101c59ead13773
container_end_page 839
container_issue 1
container_start_page 833
container_title Beilstein journal of nanotechnology
container_volume 10
creator Klenov, Nikolay
Khaydukov, Yury
Bakurskiy, Sergey
Morari, Roman
Soloviev, Igor
Boian, Vladimir
Keller, Thomas
Kupriyanov, Mikhail
Sidorenko, Anatoli
Keimer, Bernhard
description We present a study of magnetic structures with controllable effective exchange energy for Josephson switches and memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on the Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can lead to a significant enhancement of the critical current through the junction. To control the magnetic alignment we propose to use a periodic system whose unit cell is a pseudo spin valve of structure F /s/F /s where F and F are two magnetic layers having different coercive fields. In order to check the feasibility of controllable switching between AP and P states through the whole periodic structure, we prepared a superlattice [Co(1.5 nm)/Nb(8 nm)/Co(2.5 nm)/Nb(8 nm)] between two superconducting layers of Nb(25 nm). Neutron scattering and magnetometry data showed that parallel and antiparallel alignment can be controlled with a magnetic field of only several tens of Oersted.
doi_str_mv 10.3762/BJNANO.10.83
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2b59bf9a3221457d87a19e6b508ec30a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2b59bf9a3221457d87a19e6b508ec30a</doaj_id><sourcerecordid>2215011532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-6300b6300fa1cbc35f8fbf2bb0d8e0db76ccc121f3265e5174101c59ead13773</originalsourceid><addsrcrecordid>eNpdkUtPGzEQgK2qqKDAredqJS49NODH-nWpRKPyEgocuFu2dxw22l2ndjZS_n0dAgjwwZ6xP30eexD6TvAZk4Ke_7mdX8zvz0qq2Bd0RInG05oq8fVdfIhOcl7iMmpMlVbf0CEjmGgl8RHiD5Da2LS-msXzuatWGcYmVnnVDtXGdhuoQkyVT9u4gKFQPfQxbY_RQbBdhpOXdYIeL_8-zq6nd_dXN7OLu6mvpVpPBcPY7aZgiXee8aCCC9Q53CjAjZPCe08oCYwKDpzIutTluQbbECYlm6CbvbaJdmlWqe1t2ppoW_O8EdPC2LRufQeGOq5d0JZRSmouGyUt0SAcxwo8w7a4fu9dq9H10HgY1sl2H6QfT4b2ySzixohaCEl1Efx8EaT4b4S8Nn2bPXSdHSCO2ZSLOSaEM1rQ00_oMo5pKD-1oyTRTNR1oX7tKZ9izgnCWzEEm113jVsOdoi7VLGC_3j_gDf4tZfsP65JnuM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2217193644</pqid></control><display><type>article</type><title>Periodic Co/Nb pseudo spin valve for cryogenic memory</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Klenov, Nikolay ; Khaydukov, Yury ; Bakurskiy, Sergey ; Morari, Roman ; Soloviev, Igor ; Boian, Vladimir ; Keller, Thomas ; Kupriyanov, Mikhail ; Sidorenko, Anatoli ; Keimer, Bernhard</creator><creatorcontrib>Klenov, Nikolay ; Khaydukov, Yury ; Bakurskiy, Sergey ; Morari, Roman ; Soloviev, Igor ; Boian, Vladimir ; Keller, Thomas ; Kupriyanov, Mikhail ; Sidorenko, Anatoli ; Keimer, Bernhard</creatorcontrib><description>We present a study of magnetic structures with controllable effective exchange energy for Josephson switches and memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on the Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can lead to a significant enhancement of the critical current through the junction. To control the magnetic alignment we propose to use a periodic system whose unit cell is a pseudo spin valve of structure F /s/F /s where F and F are two magnetic layers having different coercive fields. In order to check the feasibility of controllable switching between AP and P states through the whole periodic structure, we prepared a superlattice [Co(1.5 nm)/Nb(8 nm)/Co(2.5 nm)/Nb(8 nm)] between two superconducting layers of Nb(25 nm). Neutron scattering and magnetometry data showed that parallel and antiparallel alignment can be controlled with a magnetic field of only several tens of Oersted.</description><identifier>ISSN: 2190-4286</identifier><identifier>EISSN: 2190-4286</identifier><identifier>DOI: 10.3762/BJNANO.10.83</identifier><identifier>PMID: 31019870</identifier><language>eng</language><publisher>Germany: Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</publisher><subject>Alignment ; Coercivity ; Critical current (superconductivity) ; cryogenic computing ; Electrodes ; Energy ; Ferromagnetism ; Letter ; Magnetic measurement ; Nanoscience ; Nanotechnology ; Neutron scattering ; Periodic structures ; Physics ; spin valve ; Spin valves ; Stability ; superconducting spintronics ; Superconductor junctions ; Superconductors ; Superlattices ; Switches ; Switching ; Thin films ; Unit cell</subject><ispartof>Beilstein journal of nanotechnology, 2019, Vol.10 (1), p.833-839</ispartof><rights>Copyright © 2019, Klenov et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2019, Klenov et al. 2019 Klenov et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-6300b6300fa1cbc35f8fbf2bb0d8e0db76ccc121f3265e5174101c59ead13773</citedby><cites>FETCH-LOGICAL-c478t-6300b6300fa1cbc35f8fbf2bb0d8e0db76ccc121f3265e5174101c59ead13773</cites><orcidid>0000-0001-9735-2720 ; 0000-0001-6265-3670 ; 0000-0001-9945-8342 ; 0000-0002-7653-5779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2217193644/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2217193644?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,25753,27923,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31019870$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klenov, Nikolay</creatorcontrib><creatorcontrib>Khaydukov, Yury</creatorcontrib><creatorcontrib>Bakurskiy, Sergey</creatorcontrib><creatorcontrib>Morari, Roman</creatorcontrib><creatorcontrib>Soloviev, Igor</creatorcontrib><creatorcontrib>Boian, Vladimir</creatorcontrib><creatorcontrib>Keller, Thomas</creatorcontrib><creatorcontrib>Kupriyanov, Mikhail</creatorcontrib><creatorcontrib>Sidorenko, Anatoli</creatorcontrib><creatorcontrib>Keimer, Bernhard</creatorcontrib><title>Periodic Co/Nb pseudo spin valve for cryogenic memory</title><title>Beilstein journal of nanotechnology</title><addtitle>Beilstein J Nanotechnol</addtitle><description>We present a study of magnetic structures with controllable effective exchange energy for Josephson switches and memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on the Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can lead to a significant enhancement of the critical current through the junction. To control the magnetic alignment we propose to use a periodic system whose unit cell is a pseudo spin valve of structure F /s/F /s where F and F are two magnetic layers having different coercive fields. In order to check the feasibility of controllable switching between AP and P states through the whole periodic structure, we prepared a superlattice [Co(1.5 nm)/Nb(8 nm)/Co(2.5 nm)/Nb(8 nm)] between two superconducting layers of Nb(25 nm). Neutron scattering and magnetometry data showed that parallel and antiparallel alignment can be controlled with a magnetic field of only several tens of Oersted.</description><subject>Alignment</subject><subject>Coercivity</subject><subject>Critical current (superconductivity)</subject><subject>cryogenic computing</subject><subject>Electrodes</subject><subject>Energy</subject><subject>Ferromagnetism</subject><subject>Letter</subject><subject>Magnetic measurement</subject><subject>Nanoscience</subject><subject>Nanotechnology</subject><subject>Neutron scattering</subject><subject>Periodic structures</subject><subject>Physics</subject><subject>spin valve</subject><subject>Spin valves</subject><subject>Stability</subject><subject>superconducting spintronics</subject><subject>Superconductor junctions</subject><subject>Superconductors</subject><subject>Superlattices</subject><subject>Switches</subject><subject>Switching</subject><subject>Thin films</subject><subject>Unit cell</subject><issn>2190-4286</issn><issn>2190-4286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkUtPGzEQgK2qqKDAredqJS49NODH-nWpRKPyEgocuFu2dxw22l2ndjZS_n0dAgjwwZ6xP30eexD6TvAZk4Ke_7mdX8zvz0qq2Bd0RInG05oq8fVdfIhOcl7iMmpMlVbf0CEjmGgl8RHiD5Da2LS-msXzuatWGcYmVnnVDtXGdhuoQkyVT9u4gKFQPfQxbY_RQbBdhpOXdYIeL_8-zq6nd_dXN7OLu6mvpVpPBcPY7aZgiXee8aCCC9Q53CjAjZPCe08oCYwKDpzIutTluQbbECYlm6CbvbaJdmlWqe1t2ppoW_O8EdPC2LRufQeGOq5d0JZRSmouGyUt0SAcxwo8w7a4fu9dq9H10HgY1sl2H6QfT4b2ySzixohaCEl1Efx8EaT4b4S8Nn2bPXSdHSCO2ZSLOSaEM1rQ00_oMo5pKD-1oyTRTNR1oX7tKZ9izgnCWzEEm113jVsOdoi7VLGC_3j_gDf4tZfsP65JnuM</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Klenov, Nikolay</creator><creator>Khaydukov, Yury</creator><creator>Bakurskiy, Sergey</creator><creator>Morari, Roman</creator><creator>Soloviev, Igor</creator><creator>Boian, Vladimir</creator><creator>Keller, Thomas</creator><creator>Kupriyanov, Mikhail</creator><creator>Sidorenko, Anatoli</creator><creator>Keimer, Bernhard</creator><general>Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</general><general>Beilstein-Institut</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9735-2720</orcidid><orcidid>https://orcid.org/0000-0001-6265-3670</orcidid><orcidid>https://orcid.org/0000-0001-9945-8342</orcidid><orcidid>https://orcid.org/0000-0002-7653-5779</orcidid></search><sort><creationdate>2019</creationdate><title>Periodic Co/Nb pseudo spin valve for cryogenic memory</title><author>Klenov, Nikolay ; Khaydukov, Yury ; Bakurskiy, Sergey ; Morari, Roman ; Soloviev, Igor ; Boian, Vladimir ; Keller, Thomas ; Kupriyanov, Mikhail ; Sidorenko, Anatoli ; Keimer, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-6300b6300fa1cbc35f8fbf2bb0d8e0db76ccc121f3265e5174101c59ead13773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alignment</topic><topic>Coercivity</topic><topic>Critical current (superconductivity)</topic><topic>cryogenic computing</topic><topic>Electrodes</topic><topic>Energy</topic><topic>Ferromagnetism</topic><topic>Letter</topic><topic>Magnetic measurement</topic><topic>Nanoscience</topic><topic>Nanotechnology</topic><topic>Neutron scattering</topic><topic>Periodic structures</topic><topic>Physics</topic><topic>spin valve</topic><topic>Spin valves</topic><topic>Stability</topic><topic>superconducting spintronics</topic><topic>Superconductor junctions</topic><topic>Superconductors</topic><topic>Superlattices</topic><topic>Switches</topic><topic>Switching</topic><topic>Thin films</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klenov, Nikolay</creatorcontrib><creatorcontrib>Khaydukov, Yury</creatorcontrib><creatorcontrib>Bakurskiy, Sergey</creatorcontrib><creatorcontrib>Morari, Roman</creatorcontrib><creatorcontrib>Soloviev, Igor</creatorcontrib><creatorcontrib>Boian, Vladimir</creatorcontrib><creatorcontrib>Keller, Thomas</creatorcontrib><creatorcontrib>Kupriyanov, Mikhail</creatorcontrib><creatorcontrib>Sidorenko, Anatoli</creatorcontrib><creatorcontrib>Keimer, Bernhard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Beilstein journal of nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klenov, Nikolay</au><au>Khaydukov, Yury</au><au>Bakurskiy, Sergey</au><au>Morari, Roman</au><au>Soloviev, Igor</au><au>Boian, Vladimir</au><au>Keller, Thomas</au><au>Kupriyanov, Mikhail</au><au>Sidorenko, Anatoli</au><au>Keimer, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Co/Nb pseudo spin valve for cryogenic memory</atitle><jtitle>Beilstein journal of nanotechnology</jtitle><addtitle>Beilstein J Nanotechnol</addtitle><date>2019</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>833</spage><epage>839</epage><pages>833-839</pages><issn>2190-4286</issn><eissn>2190-4286</eissn><abstract>We present a study of magnetic structures with controllable effective exchange energy for Josephson switches and memory applications. As a basis for a weak link we propose to use a periodic structure composed of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on the Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can lead to a significant enhancement of the critical current through the junction. To control the magnetic alignment we propose to use a periodic system whose unit cell is a pseudo spin valve of structure F /s/F /s where F and F are two magnetic layers having different coercive fields. In order to check the feasibility of controllable switching between AP and P states through the whole periodic structure, we prepared a superlattice [Co(1.5 nm)/Nb(8 nm)/Co(2.5 nm)/Nb(8 nm)] between two superconducting layers of Nb(25 nm). Neutron scattering and magnetometry data showed that parallel and antiparallel alignment can be controlled with a magnetic field of only several tens of Oersted.</abstract><cop>Germany</cop><pub>Beilstein-Institut zur Föerderung der Chemischen Wissenschaften</pub><pmid>31019870</pmid><doi>10.3762/BJNANO.10.83</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9735-2720</orcidid><orcidid>https://orcid.org/0000-0001-6265-3670</orcidid><orcidid>https://orcid.org/0000-0001-9945-8342</orcidid><orcidid>https://orcid.org/0000-0002-7653-5779</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-4286
ispartof Beilstein journal of nanotechnology, 2019, Vol.10 (1), p.833-839
issn 2190-4286
2190-4286
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2b59bf9a3221457d87a19e6b508ec30a
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Alignment
Coercivity
Critical current (superconductivity)
cryogenic computing
Electrodes
Energy
Ferromagnetism
Letter
Magnetic measurement
Nanoscience
Nanotechnology
Neutron scattering
Periodic structures
Physics
spin valve
Spin valves
Stability
superconducting spintronics
Superconductor junctions
Superconductors
Superlattices
Switches
Switching
Thin films
Unit cell
title Periodic Co/Nb pseudo spin valve for cryogenic memory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Co/Nb%20pseudo%20spin%20valve%20for%20cryogenic%20memory&rft.jtitle=Beilstein%20journal%20of%20nanotechnology&rft.au=Klenov,%20Nikolay&rft.date=2019&rft.volume=10&rft.issue=1&rft.spage=833&rft.epage=839&rft.pages=833-839&rft.issn=2190-4286&rft.eissn=2190-4286&rft_id=info:doi/10.3762/BJNANO.10.83&rft_dat=%3Cproquest_doaj_%3E2215011532%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-6300b6300fa1cbc35f8fbf2bb0d8e0db76ccc121f3265e5174101c59ead13773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2217193644&rft_id=info:pmid/31019870&rfr_iscdi=true