Loading…

Tet1 Deficiency Leads to Premature Ovarian Failure

Tet enzymes participate in DNA demethylation and play critical roles in stem cell pluripotency and differentiation. DNA methylation alters with age. We find that deficiency reduces fertility and leads to accelerated reproductive failure with age. Noticeably, -deficient mice at young age exhibit dram...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in cell and developmental biology 2021-03, Vol.9, p.644135-644135
Main Authors: Liu, Linlin, Wang, Huasong, Xu, Guo Liang, Liu, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tet enzymes participate in DNA demethylation and play critical roles in stem cell pluripotency and differentiation. DNA methylation alters with age. We find that deficiency reduces fertility and leads to accelerated reproductive failure with age. Noticeably, -deficient mice at young age exhibit dramatically reduced follicle reserve and the follicle reserve further decreases with age, phenomenon consistent with premature ovarian failure (POF) syndrome. Consequently, deficient mice become infertile by reproductive middle age, while age matched wild-type mice still robustly reproduce. Moreover, by single cell transcriptome analysis of oocytes, deficiency elevates organelle fission, associated with defects in ubiquitination and declined autophagy, and also upregulates signaling pathways for Alzheimer's diseases, but down-regulates X-chromosome linked genes, such as , which is known to be implicated in POF. Additionally, is aberrantly upregulated and endogenous retroviruses also are altered in deficient oocytes. These molecular changes are consistent with oocyte senescence and follicle atresia and depletion found in premature ovarian failure or insufficiency. Our data suggest that enzyme plays roles in maintaining oocyte quality as well as oocyte number and follicle reserve and its deficiency can lead to POF.
ISSN:2296-634X
2296-634X
DOI:10.3389/fcell.2021.644135