Loading…

Diffusion-Tensor-Tractography-Based Diagnosis for Injury of Corticospinal Tract in a Patient with Hemiplegia Following Traumatic Brain Injury

This paper reports a mechanism for corticospinal tract injury in a patient with hemiplegia following traumatic brain injury (TBI) based on diffusion tensor tractography (DTT) finding. A 73-year-old male with TBI resulting from a fall, without medical history, was diagnosed as having left convexity e...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) 2020-03, Vol.10 (3), p.156
Main Authors: Park, Chan-Hyuk, Kim, Su-Hong, Jung, Han-Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper reports a mechanism for corticospinal tract injury in a patient with hemiplegia following traumatic brain injury (TBI) based on diffusion tensor tractography (DTT) finding. A 73-year-old male with TBI resulting from a fall, without medical history, was diagnosed as having left convexity epidural hematoma (EDH). He underwent craniotomy and suffered motor weakness on the right side of the body. Two weeks after onset, he was transferred to a rehabilitation department with an alerted level of consciousness. Four weeks after onset, his motor functions were grade 1 by the Medical Research Council's (MRC) standards in the right-side limbs and grade 4 in the left-side limbs. The result of DTT using the different regions of interest (ROIs) showed that most of the right corticospinal tract (CST) did not reach the cerebral cortex around where the EDH was located, and when the ROI was placed on upper pons, a disconnection of the CST was shown and a connection of the CST in ROI with the middle pons appeared. However, the right CST was connected to the cerebral cortex below the pons regardless of ROI. This study is the first report to use DTT to detect that the discontinuation of the left CST in the cerebral cortex and injury lesions below the lower pons and between the upper and lower pons are responsible for motor weakness in a patient.
ISSN:2075-4418
2075-4418
DOI:10.3390/diagnostics10030156