Loading…
Assessment of the biological potential of diaryltriazene-derived triazene compounds
In the present study, novel, 1,3-diaryltriazene-derived triazene compounds were synthesized and tested. Triazenes are versatile and belong to a group of alkylating agents with interesting physicochemical properties and proven biological activities. This study describes the synthesis, molecular and c...
Saved in:
Published in: | Scientific reports 2021-01, Vol.11 (1), p.2541-15, Article 2541 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study, novel, 1,3-diaryltriazene-derived triazene compounds were synthesized and tested. Triazenes are versatile and belong to a group of alkylating agents with interesting physicochemical properties and proven biological activities. This study describes the synthesis, molecular and crystalline structure, biological activity evaluation, and antifungal and antimicrobial potentials of 1,3-
bis
(X-methoxy-Y-nitrophenyl)triazenes [X = 2 and 5; Y = 4 and 5]. The antimicrobial and antifungal activities of the compounds were tested by evaluating the sensitivity of bacteria (American Type Culture Collection, ATCC) and clinical isolates to their solutions using standardized microbiological assays, cytotoxicity evaluation, and ecotoxicity tests. The antimicrobial potentials of triazenes were determined according to their minimum inhibitory concentrations (MICs); these compounds were active against gram-positive and gram-negative bacteria, with low MIC values. The most surprising result was obtained for
T3
having the effective MIC of 9.937 µg/mL and antifungal activity against
Candida albicans
ATCC 90028,
C. parapsilosis
ATCC 22019, and
C. tropicallis
IC. To the best of our knowledge, this study is the first to report promising activities of triazene compounds against yeast and filamentous fungi. The results showed the potential utility of triazenes as agents affecting selected resistant bacterial and fungal strains. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-81823-2 |