Loading…

Overnight Sleep Staging Using Chest-Worn Accelerometry

Overnight sleep staging is an important part of the diagnosis of various sleep disorders. Polysomnography is the gold standard for sleep staging, but less-obtrusive sensing modalities are of emerging interest. Here, we developed and validated an algorithm to perform "proxy" sleep staging u...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-09, Vol.24 (17), p.5717
Main Authors: Schipper, Fons, Grassi, Angela, Ross, Marco, Cerny, Andreas, Anderer, Peter, Hermans, Lieke, van Meulen, Fokke, Leentjens, Mickey, Schoustra, Emily, Bosschieter, Pien, van Sloun, Ruud J G, Overeem, Sebastiaan, Fonseca, Pedro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c304t-647ddd5bc760440dee3cd7544778f0faac5c513122fb68c73a278261a96328cf3
container_end_page
container_issue 17
container_start_page 5717
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Schipper, Fons
Grassi, Angela
Ross, Marco
Cerny, Andreas
Anderer, Peter
Hermans, Lieke
van Meulen, Fokke
Leentjens, Mickey
Schoustra, Emily
Bosschieter, Pien
van Sloun, Ruud J G
Overeem, Sebastiaan
Fonseca, Pedro
description Overnight sleep staging is an important part of the diagnosis of various sleep disorders. Polysomnography is the gold standard for sleep staging, but less-obtrusive sensing modalities are of emerging interest. Here, we developed and validated an algorithm to perform "proxy" sleep staging using cardiac and respiratory signals derived from a chest-worn accelerometer. We collected data in two sleep centers, using a chest-worn accelerometer in combination with full PSG. A total of 323 participants were analyzed, aged 13-83 years, with BMI 18-47 kg/m . We derived cardiac and respiratory features from the accelerometer and then applied a previously developed method for automatic cardio-respiratory sleep staging. We compared the estimated sleep stages against those derived from PSG and determined performance. Epoch-by-epoch agreement with four-class scoring (Wake, REM, N1+N2, N3) reached a Cohen's kappa coefficient of agreement of 0.68 and an accuracy of 80.8%. For Wake vs. Sleep classification, an accuracy of 93.3% was obtained, with a sensitivity of 78.7% and a specificity of 96.6%. We showed that cardiorespiratory signals obtained from a chest-worn accelerometer can be used to estimate sleep stages among a population that is diverse in age, BMI, and prevalence of sleep disorders. This opens up the path towards various clinical applications in sleep medicine.
doi_str_mv 10.3390/s24175717
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2b949ab816014a0ca955c56c9a0f3abb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2b949ab816014a0ca955c56c9a0f3abb</doaj_id><sourcerecordid>3104073890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-647ddd5bc760440dee3cd7544778f0faac5c513122fb68c73a278261a96328cf3</originalsourceid><addsrcrecordid>eNpdkctKAzEUhoMotlYXvoAU3OhiNMnJ5LIsxUuh0EUtLkMmk2mnTCc1mQp9e6cXi7jJCYePj_PzI3RL8BOAws-RMiJSQcQZ6hJGWSIpxed__h10FeMSYwoA8hJ1QFGRciq7iE--XajL-aLpTyvn1v1pY-ZlPe_P4u4dLlxskk8f6v7AWle54FeuCdtrdFGYKrqb4-yh2evLx_A9GU_eRsPBOLGAWZNwJvI8TzMrOGYM586BzUXKmBCywIUxNrUpAUJpkXFpBRgqJOXEKA5U2gJ6aHTw5t4s9TqUKxO22ptS7xc-zLUJTWkrp2mmmDKZJBwTZrA1Km3l3CqDCzBZ1roeDq518F-bNpdelbHNVJna-U3UQDCTRBEBLXr_D136TajbpHsKC5AKt9TjgbLBxxhccTqQYL0rRp-Kadm7o3GTrVx-In-bgB9ESYUR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104073890</pqid></control><display><type>article</type><title>Overnight Sleep Staging Using Chest-Worn Accelerometry</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Schipper, Fons ; Grassi, Angela ; Ross, Marco ; Cerny, Andreas ; Anderer, Peter ; Hermans, Lieke ; van Meulen, Fokke ; Leentjens, Mickey ; Schoustra, Emily ; Bosschieter, Pien ; van Sloun, Ruud J G ; Overeem, Sebastiaan ; Fonseca, Pedro</creator><creatorcontrib>Schipper, Fons ; Grassi, Angela ; Ross, Marco ; Cerny, Andreas ; Anderer, Peter ; Hermans, Lieke ; van Meulen, Fokke ; Leentjens, Mickey ; Schoustra, Emily ; Bosschieter, Pien ; van Sloun, Ruud J G ; Overeem, Sebastiaan ; Fonseca, Pedro</creatorcontrib><description>Overnight sleep staging is an important part of the diagnosis of various sleep disorders. Polysomnography is the gold standard for sleep staging, but less-obtrusive sensing modalities are of emerging interest. Here, we developed and validated an algorithm to perform "proxy" sleep staging using cardiac and respiratory signals derived from a chest-worn accelerometer. We collected data in two sleep centers, using a chest-worn accelerometer in combination with full PSG. A total of 323 participants were analyzed, aged 13-83 years, with BMI 18-47 kg/m . We derived cardiac and respiratory features from the accelerometer and then applied a previously developed method for automatic cardio-respiratory sleep staging. We compared the estimated sleep stages against those derived from PSG and determined performance. Epoch-by-epoch agreement with four-class scoring (Wake, REM, N1+N2, N3) reached a Cohen's kappa coefficient of agreement of 0.68 and an accuracy of 80.8%. For Wake vs. Sleep classification, an accuracy of 93.3% was obtained, with a sensitivity of 78.7% and a specificity of 96.6%. We showed that cardiorespiratory signals obtained from a chest-worn accelerometer can be used to estimate sleep stages among a population that is diverse in age, BMI, and prevalence of sleep disorders. This opens up the path towards various clinical applications in sleep medicine.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24175717</identifier><identifier>PMID: 39275628</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>accelerometer ; Accelerometers ; Accelerometry - instrumentation ; Accelerometry - methods ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Artificial intelligence ; Clocks &amp; watches ; Data collection ; Electroencephalography ; Electromyography ; Female ; Heart rate ; Humans ; hypnogram ; Male ; Medical research ; Middle Aged ; Neural networks ; Polysomnography - methods ; Sensors ; Sleep apnea ; Sleep disorders ; sleep metrics ; Sleep Stages - physiology ; sleep staging ; Thorax ; Time series ; Young Adult</subject><ispartof>Sensors (Basel, Switzerland), 2024-09, Vol.24 (17), p.5717</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-647ddd5bc760440dee3cd7544778f0faac5c513122fb68c73a278261a96328cf3</cites><orcidid>0000-0002-8018-6807 ; 0000-0003-2932-6402 ; 0000-0002-9955-5780 ; 0000-0002-3869-6678 ; 0009-0006-7435-6204 ; 0000-0001-7964-3225 ; 0000-0002-2069-4105 ; 0000-0002-5486-9663 ; 0000-0003-2845-0495 ; 0000-0001-8191-1866 ; 0000-0002-6445-9836 ; 0000-0003-2745-6967 ; 0000-0003-0603-5709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3104073890/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3104073890?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39275628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schipper, Fons</creatorcontrib><creatorcontrib>Grassi, Angela</creatorcontrib><creatorcontrib>Ross, Marco</creatorcontrib><creatorcontrib>Cerny, Andreas</creatorcontrib><creatorcontrib>Anderer, Peter</creatorcontrib><creatorcontrib>Hermans, Lieke</creatorcontrib><creatorcontrib>van Meulen, Fokke</creatorcontrib><creatorcontrib>Leentjens, Mickey</creatorcontrib><creatorcontrib>Schoustra, Emily</creatorcontrib><creatorcontrib>Bosschieter, Pien</creatorcontrib><creatorcontrib>van Sloun, Ruud J G</creatorcontrib><creatorcontrib>Overeem, Sebastiaan</creatorcontrib><creatorcontrib>Fonseca, Pedro</creatorcontrib><title>Overnight Sleep Staging Using Chest-Worn Accelerometry</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Overnight sleep staging is an important part of the diagnosis of various sleep disorders. Polysomnography is the gold standard for sleep staging, but less-obtrusive sensing modalities are of emerging interest. Here, we developed and validated an algorithm to perform "proxy" sleep staging using cardiac and respiratory signals derived from a chest-worn accelerometer. We collected data in two sleep centers, using a chest-worn accelerometer in combination with full PSG. A total of 323 participants were analyzed, aged 13-83 years, with BMI 18-47 kg/m . We derived cardiac and respiratory features from the accelerometer and then applied a previously developed method for automatic cardio-respiratory sleep staging. We compared the estimated sleep stages against those derived from PSG and determined performance. Epoch-by-epoch agreement with four-class scoring (Wake, REM, N1+N2, N3) reached a Cohen's kappa coefficient of agreement of 0.68 and an accuracy of 80.8%. For Wake vs. Sleep classification, an accuracy of 93.3% was obtained, with a sensitivity of 78.7% and a specificity of 96.6%. We showed that cardiorespiratory signals obtained from a chest-worn accelerometer can be used to estimate sleep stages among a population that is diverse in age, BMI, and prevalence of sleep disorders. This opens up the path towards various clinical applications in sleep medicine.</description><subject>accelerometer</subject><subject>Accelerometers</subject><subject>Accelerometry - instrumentation</subject><subject>Accelerometry - methods</subject><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Clocks &amp; watches</subject><subject>Data collection</subject><subject>Electroencephalography</subject><subject>Electromyography</subject><subject>Female</subject><subject>Heart rate</subject><subject>Humans</subject><subject>hypnogram</subject><subject>Male</subject><subject>Medical research</subject><subject>Middle Aged</subject><subject>Neural networks</subject><subject>Polysomnography - methods</subject><subject>Sensors</subject><subject>Sleep apnea</subject><subject>Sleep disorders</subject><subject>sleep metrics</subject><subject>Sleep Stages - physiology</subject><subject>sleep staging</subject><subject>Thorax</subject><subject>Time series</subject><subject>Young Adult</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkctKAzEUhoMotlYXvoAU3OhiNMnJ5LIsxUuh0EUtLkMmk2mnTCc1mQp9e6cXi7jJCYePj_PzI3RL8BOAws-RMiJSQcQZ6hJGWSIpxed__h10FeMSYwoA8hJ1QFGRciq7iE--XajL-aLpTyvn1v1pY-ZlPe_P4u4dLlxskk8f6v7AWle54FeuCdtrdFGYKrqb4-yh2evLx_A9GU_eRsPBOLGAWZNwJvI8TzMrOGYM586BzUXKmBCywIUxNrUpAUJpkXFpBRgqJOXEKA5U2gJ6aHTw5t4s9TqUKxO22ptS7xc-zLUJTWkrp2mmmDKZJBwTZrA1Km3l3CqDCzBZ1roeDq518F-bNpdelbHNVJna-U3UQDCTRBEBLXr_D136TajbpHsKC5AKt9TjgbLBxxhccTqQYL0rRp-Kadm7o3GTrVx-In-bgB9ESYUR</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Schipper, Fons</creator><creator>Grassi, Angela</creator><creator>Ross, Marco</creator><creator>Cerny, Andreas</creator><creator>Anderer, Peter</creator><creator>Hermans, Lieke</creator><creator>van Meulen, Fokke</creator><creator>Leentjens, Mickey</creator><creator>Schoustra, Emily</creator><creator>Bosschieter, Pien</creator><creator>van Sloun, Ruud J G</creator><creator>Overeem, Sebastiaan</creator><creator>Fonseca, Pedro</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8018-6807</orcidid><orcidid>https://orcid.org/0000-0003-2932-6402</orcidid><orcidid>https://orcid.org/0000-0002-9955-5780</orcidid><orcidid>https://orcid.org/0000-0002-3869-6678</orcidid><orcidid>https://orcid.org/0009-0006-7435-6204</orcidid><orcidid>https://orcid.org/0000-0001-7964-3225</orcidid><orcidid>https://orcid.org/0000-0002-2069-4105</orcidid><orcidid>https://orcid.org/0000-0002-5486-9663</orcidid><orcidid>https://orcid.org/0000-0003-2845-0495</orcidid><orcidid>https://orcid.org/0000-0001-8191-1866</orcidid><orcidid>https://orcid.org/0000-0002-6445-9836</orcidid><orcidid>https://orcid.org/0000-0003-2745-6967</orcidid><orcidid>https://orcid.org/0000-0003-0603-5709</orcidid></search><sort><creationdate>20240902</creationdate><title>Overnight Sleep Staging Using Chest-Worn Accelerometry</title><author>Schipper, Fons ; Grassi, Angela ; Ross, Marco ; Cerny, Andreas ; Anderer, Peter ; Hermans, Lieke ; van Meulen, Fokke ; Leentjens, Mickey ; Schoustra, Emily ; Bosschieter, Pien ; van Sloun, Ruud J G ; Overeem, Sebastiaan ; Fonseca, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-647ddd5bc760440dee3cd7544778f0faac5c513122fb68c73a278261a96328cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>accelerometer</topic><topic>Accelerometers</topic><topic>Accelerometry - instrumentation</topic><topic>Accelerometry - methods</topic><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Clocks &amp; watches</topic><topic>Data collection</topic><topic>Electroencephalography</topic><topic>Electromyography</topic><topic>Female</topic><topic>Heart rate</topic><topic>Humans</topic><topic>hypnogram</topic><topic>Male</topic><topic>Medical research</topic><topic>Middle Aged</topic><topic>Neural networks</topic><topic>Polysomnography - methods</topic><topic>Sensors</topic><topic>Sleep apnea</topic><topic>Sleep disorders</topic><topic>sleep metrics</topic><topic>Sleep Stages - physiology</topic><topic>sleep staging</topic><topic>Thorax</topic><topic>Time series</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schipper, Fons</creatorcontrib><creatorcontrib>Grassi, Angela</creatorcontrib><creatorcontrib>Ross, Marco</creatorcontrib><creatorcontrib>Cerny, Andreas</creatorcontrib><creatorcontrib>Anderer, Peter</creatorcontrib><creatorcontrib>Hermans, Lieke</creatorcontrib><creatorcontrib>van Meulen, Fokke</creatorcontrib><creatorcontrib>Leentjens, Mickey</creatorcontrib><creatorcontrib>Schoustra, Emily</creatorcontrib><creatorcontrib>Bosschieter, Pien</creatorcontrib><creatorcontrib>van Sloun, Ruud J G</creatorcontrib><creatorcontrib>Overeem, Sebastiaan</creatorcontrib><creatorcontrib>Fonseca, Pedro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schipper, Fons</au><au>Grassi, Angela</au><au>Ross, Marco</au><au>Cerny, Andreas</au><au>Anderer, Peter</au><au>Hermans, Lieke</au><au>van Meulen, Fokke</au><au>Leentjens, Mickey</au><au>Schoustra, Emily</au><au>Bosschieter, Pien</au><au>van Sloun, Ruud J G</au><au>Overeem, Sebastiaan</au><au>Fonseca, Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overnight Sleep Staging Using Chest-Worn Accelerometry</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-09-02</date><risdate>2024</risdate><volume>24</volume><issue>17</issue><spage>5717</spage><pages>5717-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Overnight sleep staging is an important part of the diagnosis of various sleep disorders. Polysomnography is the gold standard for sleep staging, but less-obtrusive sensing modalities are of emerging interest. Here, we developed and validated an algorithm to perform "proxy" sleep staging using cardiac and respiratory signals derived from a chest-worn accelerometer. We collected data in two sleep centers, using a chest-worn accelerometer in combination with full PSG. A total of 323 participants were analyzed, aged 13-83 years, with BMI 18-47 kg/m . We derived cardiac and respiratory features from the accelerometer and then applied a previously developed method for automatic cardio-respiratory sleep staging. We compared the estimated sleep stages against those derived from PSG and determined performance. Epoch-by-epoch agreement with four-class scoring (Wake, REM, N1+N2, N3) reached a Cohen's kappa coefficient of agreement of 0.68 and an accuracy of 80.8%. For Wake vs. Sleep classification, an accuracy of 93.3% was obtained, with a sensitivity of 78.7% and a specificity of 96.6%. We showed that cardiorespiratory signals obtained from a chest-worn accelerometer can be used to estimate sleep stages among a population that is diverse in age, BMI, and prevalence of sleep disorders. This opens up the path towards various clinical applications in sleep medicine.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39275628</pmid><doi>10.3390/s24175717</doi><orcidid>https://orcid.org/0000-0002-8018-6807</orcidid><orcidid>https://orcid.org/0000-0003-2932-6402</orcidid><orcidid>https://orcid.org/0000-0002-9955-5780</orcidid><orcidid>https://orcid.org/0000-0002-3869-6678</orcidid><orcidid>https://orcid.org/0009-0006-7435-6204</orcidid><orcidid>https://orcid.org/0000-0001-7964-3225</orcidid><orcidid>https://orcid.org/0000-0002-2069-4105</orcidid><orcidid>https://orcid.org/0000-0002-5486-9663</orcidid><orcidid>https://orcid.org/0000-0003-2845-0495</orcidid><orcidid>https://orcid.org/0000-0001-8191-1866</orcidid><orcidid>https://orcid.org/0000-0002-6445-9836</orcidid><orcidid>https://orcid.org/0000-0003-2745-6967</orcidid><orcidid>https://orcid.org/0000-0003-0603-5709</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-09, Vol.24 (17), p.5717
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2b949ab816014a0ca955c56c9a0f3abb
source Publicly Available Content Database; PubMed Central
subjects accelerometer
Accelerometers
Accelerometry - instrumentation
Accelerometry - methods
Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Artificial intelligence
Clocks & watches
Data collection
Electroencephalography
Electromyography
Female
Heart rate
Humans
hypnogram
Male
Medical research
Middle Aged
Neural networks
Polysomnography - methods
Sensors
Sleep apnea
Sleep disorders
sleep metrics
Sleep Stages - physiology
sleep staging
Thorax
Time series
Young Adult
title Overnight Sleep Staging Using Chest-Worn Accelerometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overnight%20Sleep%20Staging%20Using%20Chest-Worn%20Accelerometry&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Schipper,%20Fons&rft.date=2024-09-02&rft.volume=24&rft.issue=17&rft.spage=5717&rft.pages=5717-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24175717&rft_dat=%3Cproquest_doaj_%3E3104073890%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-647ddd5bc760440dee3cd7544778f0faac5c513122fb68c73a278261a96328cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3104073890&rft_id=info:pmid/39275628&rfr_iscdi=true