Loading…
Reproducibility Experimentation among Computer-Aided Inspection Software from a Single Point Cloud
The ISO GPS and ASME Y14.5 standards have defined dimensional and geometrical tolerance as a way to express the limits of surface part variations with respect to nominal model surfaces. A quality-control process using a measuring device verifies the conformity of the parts to these tolerances. To co...
Saved in:
Published in: | Journal of control science and engineering 2019, Vol.2019 (2019), p.1-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ISO GPS and ASME Y14.5 standards have defined dimensional and geometrical tolerance as a way to express the limits of surface part variations with respect to nominal model surfaces. A quality-control process using a measuring device verifies the conformity of the parts to these tolerances. To convert the control measurement points as captured by a device such as a coordinate measurement machine (CMM) or noncontact scan, it is necessary to select the appropriate algorithm (e.g., least square size and maximum inscribed size) and to include the working hypotheses (e.g., treatment of outliers, noise filtering, and missing data). This means that the operator conducting the analysis must decide on which algorithm to use. Through a literature review of current software programs and algorithms, many inaccuracies were found. A benchmark was therefore developed to compare the algorithm performance of three computer-aided inspection (CAI) software programs. From the same point cloud and on the same specifications (requirements and tolerances), three CAI options have been tested with several dimensional and geometrical features. |
---|---|
ISSN: | 1687-5249 1687-5257 |
DOI: | 10.1155/2019/9140702 |