Loading…

Kinematic Relations during Double Support Phase in Parkinsonian Gait

The gait of Parkinson’s disease (PD) patients is shuffling, slow, and hesitant. We investigated peculiar gait relations during the double support phase (DSP) in PD patients and healthy controls. We used 3D motion capture (SIMI) to collect kinematic parameters of the natural gait of 11 PD patients (H...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-02, Vol.12 (3), p.949
Main Authors: Sitek, Ondřej, Kalichová, Miriam, Hedbávný, Petr, Boušek, Tomáš, Baláž, Marek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The gait of Parkinson’s disease (PD) patients is shuffling, slow, and hesitant. We investigated peculiar gait relations during the double support phase (DSP) in PD patients and healthy controls. We used 3D motion capture (SIMI) to collect kinematic parameters of the natural gait of 11 PD patients (Hoehn and Yahr 2–3, 5 females, 6 males) tested on medication and the same-sized control sample (5 females, 6 males). The difference between groups was evaluated by the Mann-Whitney U test; for target parameters, the Spearman correlation was computed. Compared to the controls, the Parkinsonian step length index was significantly smaller (0.27 vs. 0.35, p < 0.05), step width index higher (0.12 vs. 0.09, p < 0.05), and the DSP duration was extended (0.165 s vs. 0.13 s, p < 0.05), whereas the single support phase was shortened (0.38 s vs. 0.4 s, p < 0.05). The Parkinsonians were faster during DSP initiation and slower during DSP termination (0.908 m·s−1 vs. 0.785 m·s−1, p < 0.05); the Parkinsonian speed was more constant. The patients showed significantly decreased range of motion (ROM) in the hip, ankle, and shoulder and adopted straighter posture during the gait. Understanding gait concatenations can update physiotherapy approaches to target the roots of movement problems instead of the consequences.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12030949