Loading…
Robust all-dielectric high Q-factor metasurface for sensing
All-dielectric metasurfaces have seen a recent surge of interest as an alternative to plasmonic devices, due to low losses and desirable optical properties. High Q-factor quasi-bound state in the continuum resonances can be manufactured and manipulated via designed asymmetry in the nanostructures. T...
Saved in:
Published in: | EPJ Web of conferences 2023, Vol.287, p.4020 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | All-dielectric metasurfaces have seen a recent surge of interest as an alternative to plasmonic devices, due to low losses and desirable optical properties. High Q-factor quasi-bound state in the continuum resonances can be manufactured and manipulated
via
designed asymmetry in the nanostructures. The presented metasurface design, based on a slotted disk nanostructure, produces strong E-Field enhancement with good surface coverage external to the structure. The design transition from structure-in-air to structure-on-substrate in a water-based sensing medium is presented, along with the robust tunability and multiplexing potential of our fabricated resonances. Our structure maintains a high Q-factor and refractive index sensitivity over a wide wavelength range in the visible and near-IR. |
---|---|
ISSN: | 2100-014X 2100-014X |
DOI: | 10.1051/epjconf/202328704020 |