Loading…

A Cryptotephra Layer in Sediments of an Infilled Maar Lake from the Eifel (Germany): First Evidence of Campanian Ignimbrite Ash Airfall in Central Europe

We analyzed mineralogical characteristics, and major as well as rare earth element concentrations, from a cryptotephra layer in sediments of the infilled maar of Auel (Eifel, Germany). The results of detailed geochemical analyses of clinopyroxenes and their glassy rims from the Auel cryptotephra lay...

Full description

Saved in:
Bibliographic Details
Published in:Quaternary 2024-06, Vol.7 (2), p.17
Main Authors: Schenk, Fiona, Hambach, Ulrich, Britzius, Sarah, Veres, Daniel, Sirocko, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We analyzed mineralogical characteristics, and major as well as rare earth element concentrations, from a cryptotephra layer in sediments of the infilled maar of Auel (Eifel, Germany). The results of detailed geochemical analyses of clinopyroxenes and their glassy rims from the Auel cryptotephra layer showed that they are similar to those from the thick Campanian Ignimbrite tephra occurrence in a loess section at Urluia (Romania). Both tephras show idiomorphic green clinopyroxenes and formation of distorted grains up to millimeter scale. The cryptotephra in the Auel core has a modelled age of around 39,940 yr b2k in the ELSA-20 chronology, almost identical to the latest 40Ar/39Ar dates for the Campanian Ignimbrite/Y-5 (CI/Y-5) eruption. These observations suggest that parts of the CI/Y-5 ash cloud were transported also northwestward into Central Europe, whereas the main branch of the CI/Y-5 ash plume was transported from southern Italy towards the NE, E, and SE. Based on pollen analyses, we conclude there was no direct effect on vegetation from the CI/Y-5 fallout in the Eifel area. Trees, shrubs, and grasses remained at pre-tephra-airfall levels for roughly 240 years, but changed around 39,700 yr b2k when thermophilic woody plants (e.g., Alnus and Carpinus) disappeared and Artemisia spread. This change in vegetation was well after the Laschamp geomagnetic excursion and also after the GI9 interstadial and quite probably represents the onset of the Heinrich Event 4 (H4) cold spell, when climatic conditions over the North Atlantic, and apparently also in Central Europe, deteriorated sharply.
ISSN:2571-550X
2571-550X
DOI:10.3390/quat7020017