Loading…

Evaluation of InSAR Tropospheric Delay Correction Methods in the Plateau Monsoon Climate Region Considering Spatial-Temporal Variability

The tropospheric delay caused by the temporal and spatial variation of meteorological parameters is the main error source in interferometric synthetic aperture radar (InSAR) applications for geodesy. To minimize the impact of tropospheric delay errors, it is necessary to select the appropriate tropo...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2023-12, Vol.23 (23), p.9574
Main Authors: Yang, Qihang, Zuo, Xiaoqing, Guo, Shipeng, Zhao, Yanxi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The tropospheric delay caused by the temporal and spatial variation of meteorological parameters is the main error source in interferometric synthetic aperture radar (InSAR) applications for geodesy. To minimize the impact of tropospheric delay errors, it is necessary to select the appropriate tropospheric delay correction method for different regions. In this study, the interferogram results of the InSAR, corrected for tropospheric delay using the Linear, Generic Atmospheric Correction Online Service for InSAR (GACOS) and ERA-5 atmospheric reanalysis dataset (ERA5) methods, are presented for the study area of the junction of the Hengduan Mountains and the Yunnan-Kweichow Plateau, which is significantly influenced by the plateau monsoon climate. Four representative regions, Eryuan, Binchuan, Dali, and Yangbi, are selected for the study and analysis. The phase standard deviation (STD), phase-height correlation, and global navigation satellite system (GNSS) data were used to evaluate the effect of tropospheric delay correction by integrating topographic, seasonal, and meteorological factors. The results show that all three methods can attenuate the tropospheric delay, but the correction effect varies with spatial and temporal characteristics.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23239574