Loading…

Photoactive Poly-L-Lysine gel with resveratrol-magnesium metal polyphenol network: A promising strategy for preventing tracheal anastomotic complications following surgery

Postoperative complications at the anastomosis site following tracheal resection are a prevalent and substantial concern. However, most existing solutions primarily focus on managing symptoms, with limited attention given to proactively preventing the underlying pathological processes. To address th...

Full description

Saved in:
Bibliographic Details
Published in:Materials today bio 2024-02, Vol.24, p.100938, Article 100938
Main Authors: Jia, Yunxuan, Shi, Jingfeng, Ding, Bowen, Zhao, Liang, Xu, Ke, Hu, Chuang, Xu, Weijiao, Zhu, Anshun, Yang, Haitang, Wang, Xiansong, Yao, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Postoperative complications at the anastomosis site following tracheal resection are a prevalent and substantial concern. However, most existing solutions primarily focus on managing symptoms, with limited attention given to proactively preventing the underlying pathological processes. To address this challenge, we conducted a drug screening focusing on clinically-relevant polyphenolic compounds, given the growing interest in polyphenolic compounds for their potential role in tissue repair during wound healing. This screening led to the identification of resveratrol as the most promising candidate for mitigating tracheal complications, as it exhibited the most significant efficacy in enhancing the expression of vascular endothelial growth factor (VEGF) while concurrently suppressing the pivotal fibrosis factor: transforming growth factor-beta 1 (TGF-β1), showcasing its robust potential in addressing these issues. Building upon this discovery, we further developed an innovative photosensitive poly-L-lysine gel integrated with a resveratrol-magnesium metal polyphenol network (MPN), named Res-Mg/PL-MA. This design allows for the enables sustained release of resveratrol and synergistically enhances the expression of VEGF and also promotes resistance to tensile forces, aided by magnesium ions, in an anastomotic tracheal fistula animal models. Moreover, the combination of resveratrol and poly-L-lysine hydrogel effectively inhibits bacteria, reduces local expression of key inflammatory factors, and induces polarization of macrophages toward an anti-inflammatory phenotype, as well as inhibits TGF-β1, consequently decreasing collagen production levels in an animal model of post-tracheal resection. In summary, our novel Res-Mg/PL-MA hydrogel, through antibacterial, anti-inflammatory, and pro-vascularization mechanisms, effectively prevents complications at tracheal anastomosis, offering significant promise for translational applications in patients undergoing tracheal surgeries.
ISSN:2590-0064
2590-0064
DOI:10.1016/j.mtbio.2023.100938