Loading…

Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling

Carbon/carbon composites are usually used as a thermal protection material in the nose cap and leading edge of hypersonic vehicles. In order to predict the thermal and ablation response of a carbon/carbon model in a hypersonic aerothermal environment, a multiphysical coupling model is established ta...

Full description

Saved in:
Bibliographic Details
Published in:International journal of aerospace engineering 2020, Vol.2020 (2020), p.1-13
Main Authors: Sun, Xuewen, Mi, Tao, Yang, Haibo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363
cites cdi_FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363
container_end_page 13
container_issue 2020
container_start_page 1
container_title International journal of aerospace engineering
container_volume 2020
creator Sun, Xuewen
Mi, Tao
Yang, Haibo
description Carbon/carbon composites are usually used as a thermal protection material in the nose cap and leading edge of hypersonic vehicles. In order to predict the thermal and ablation response of a carbon/carbon model in a hypersonic aerothermal environment, a multiphysical coupling model is established taking into account thermochemical nonequilibrium of a flow field, heat transfer, and ablation of a material. A mesh movement algorithm is implemented to track the ablation recession. The flow field distribution and ablation recession are studied. The results show that the fluid-thermal-ablation coupling model can effectively predict the thermal and ablation response of the material. The temperature and heat flux in the stationary region of the carbon/carbon model change significantly with time. As time goes on, the wall temperature increases and the heat flux decreases. The ablation in the stagnation area is more serious than in the lateral area. The shape of the material changes, and the radius of the leading edge increases after ablation. The fluid-thermal-ablation coupling model can be used to provide reference for the design of a thermal protection system.
doi_str_mv 10.1155/2020/9232684
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2bd6d997429946628c8bbdb1718622d6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2bd6d997429946628c8bbdb1718622d6</doaj_id><sourcerecordid>2355831759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqVw44wscYSw_ogd-1it2m6lIjhsz9b4I12vsnawE9D-DP5xs021HDnNaPTomdG8VfWR4G-EcL6imOKVoowK2byqLoiQbc1V27w-90K8rd6VssdYYN7yi-rvxsOIthli6XxGEB26Mj2MIUX0M3sX7HObOrSGbFJcLQWt02FIJYy-oBARoM1x8LmkGCy6jr9DTvHg44geSoiP6Kafgqu3O58P0Ndn__epH8OwO5ZgoZ-N09DP9PvqTQd98R9e6mX1cHO9XW_q-x-3d-ur-9py2o61spJh1RrhFIOGMOkV9kB4hzlhigIz0hkhVEON9MJ637mGCysUGClbJthldbd4XYK9HnI4QD7qBEE_D1J-1JDHYHuvqXHzmvmRVKlGCCqtNMYZ0hIpKHUn1-fFNeT0a_Jl1Ps05TifrynjXDLScjVTXxfK5lRK9t15K8H6FKA-BahfApzxLwu-C9HBn_A_-tNC-5nxHfyj5-gFFuwJouGlMw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355831759</pqid></control><display><type>article</type><title>Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content (ProQuest)</source><creator>Sun, Xuewen ; Mi, Tao ; Yang, Haibo</creator><contributor>Vahala, Linda L.</contributor><creatorcontrib>Sun, Xuewen ; Mi, Tao ; Yang, Haibo ; Vahala, Linda L.</creatorcontrib><description>Carbon/carbon composites are usually used as a thermal protection material in the nose cap and leading edge of hypersonic vehicles. In order to predict the thermal and ablation response of a carbon/carbon model in a hypersonic aerothermal environment, a multiphysical coupling model is established taking into account thermochemical nonequilibrium of a flow field, heat transfer, and ablation of a material. A mesh movement algorithm is implemented to track the ablation recession. The flow field distribution and ablation recession are studied. The results show that the fluid-thermal-ablation coupling model can effectively predict the thermal and ablation response of the material. The temperature and heat flux in the stationary region of the carbon/carbon model change significantly with time. As time goes on, the wall temperature increases and the heat flux decreases. The ablation in the stagnation area is more serious than in the lateral area. The shape of the material changes, and the radius of the leading edge increases after ablation. The fluid-thermal-ablation coupling model can be used to provide reference for the design of a thermal protection system.</description><identifier>ISSN: 1687-5966</identifier><identifier>EISSN: 1687-5974</identifier><identifier>DOI: 10.1155/2020/9232684</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Aerospace engineering ; Aircraft ; Algorithms ; Carbon ; Chemical reactions ; Composite materials ; Coupling ; Energy conservation ; Finite element method ; Heat flux ; Heat transfer ; Hypersonic vehicles ; Nose cones ; Recession ; Recessions ; Thermal protection ; Wall temperature</subject><ispartof>International journal of aerospace engineering, 2020, Vol.2020 (2020), p.1-13</ispartof><rights>Copyright © 2020 Xuewen Sun et al.</rights><rights>Copyright © 2020 Xuewen Sun et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363</citedby><cites>FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363</cites><orcidid>0000-0003-0033-795X ; 0000-0003-2966-0283 ; 0000-0001-5932-4470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2355831759/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2355831759?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,25731,27900,27901,27902,36989,44566,74869</link.rule.ids></links><search><contributor>Vahala, Linda L.</contributor><creatorcontrib>Sun, Xuewen</creatorcontrib><creatorcontrib>Mi, Tao</creatorcontrib><creatorcontrib>Yang, Haibo</creatorcontrib><title>Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling</title><title>International journal of aerospace engineering</title><description>Carbon/carbon composites are usually used as a thermal protection material in the nose cap and leading edge of hypersonic vehicles. In order to predict the thermal and ablation response of a carbon/carbon model in a hypersonic aerothermal environment, a multiphysical coupling model is established taking into account thermochemical nonequilibrium of a flow field, heat transfer, and ablation of a material. A mesh movement algorithm is implemented to track the ablation recession. The flow field distribution and ablation recession are studied. The results show that the fluid-thermal-ablation coupling model can effectively predict the thermal and ablation response of the material. The temperature and heat flux in the stationary region of the carbon/carbon model change significantly with time. As time goes on, the wall temperature increases and the heat flux decreases. The ablation in the stagnation area is more serious than in the lateral area. The shape of the material changes, and the radius of the leading edge increases after ablation. The fluid-thermal-ablation coupling model can be used to provide reference for the design of a thermal protection system.</description><subject>Aerospace engineering</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Carbon</subject><subject>Chemical reactions</subject><subject>Composite materials</subject><subject>Coupling</subject><subject>Energy conservation</subject><subject>Finite element method</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Hypersonic vehicles</subject><subject>Nose cones</subject><subject>Recession</subject><subject>Recessions</subject><subject>Thermal protection</subject><subject>Wall temperature</subject><issn>1687-5966</issn><issn>1687-5974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEEqVw44wscYSw_ogd-1it2m6lIjhsz9b4I12vsnawE9D-DP5xs021HDnNaPTomdG8VfWR4G-EcL6imOKVoowK2byqLoiQbc1V27w-90K8rd6VssdYYN7yi-rvxsOIthli6XxGEB26Mj2MIUX0M3sX7HObOrSGbFJcLQWt02FIJYy-oBARoM1x8LmkGCy6jr9DTvHg44geSoiP6Kafgqu3O58P0Ndn__epH8OwO5ZgoZ-N09DP9PvqTQd98R9e6mX1cHO9XW_q-x-3d-ur-9py2o61spJh1RrhFIOGMOkV9kB4hzlhigIz0hkhVEON9MJ637mGCysUGClbJthldbd4XYK9HnI4QD7qBEE_D1J-1JDHYHuvqXHzmvmRVKlGCCqtNMYZ0hIpKHUn1-fFNeT0a_Jl1Ps05TifrynjXDLScjVTXxfK5lRK9t15K8H6FKA-BahfApzxLwu-C9HBn_A_-tNC-5nxHfyj5-gFFuwJouGlMw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sun, Xuewen</creator><creator>Mi, Tao</creator><creator>Yang, Haibo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0033-795X</orcidid><orcidid>https://orcid.org/0000-0003-2966-0283</orcidid><orcidid>https://orcid.org/0000-0001-5932-4470</orcidid></search><sort><creationdate>2020</creationdate><title>Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling</title><author>Sun, Xuewen ; Mi, Tao ; Yang, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerospace engineering</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Carbon</topic><topic>Chemical reactions</topic><topic>Composite materials</topic><topic>Coupling</topic><topic>Energy conservation</topic><topic>Finite element method</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Hypersonic vehicles</topic><topic>Nose cones</topic><topic>Recession</topic><topic>Recessions</topic><topic>Thermal protection</topic><topic>Wall temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xuewen</creatorcontrib><creatorcontrib>Mi, Tao</creatorcontrib><creatorcontrib>Yang, Haibo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xuewen</au><au>Mi, Tao</au><au>Yang, Haibo</au><au>Vahala, Linda L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling</atitle><jtitle>International journal of aerospace engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1687-5966</issn><eissn>1687-5974</eissn><abstract>Carbon/carbon composites are usually used as a thermal protection material in the nose cap and leading edge of hypersonic vehicles. In order to predict the thermal and ablation response of a carbon/carbon model in a hypersonic aerothermal environment, a multiphysical coupling model is established taking into account thermochemical nonequilibrium of a flow field, heat transfer, and ablation of a material. A mesh movement algorithm is implemented to track the ablation recession. The flow field distribution and ablation recession are studied. The results show that the fluid-thermal-ablation coupling model can effectively predict the thermal and ablation response of the material. The temperature and heat flux in the stationary region of the carbon/carbon model change significantly with time. As time goes on, the wall temperature increases and the heat flux decreases. The ablation in the stagnation area is more serious than in the lateral area. The shape of the material changes, and the radius of the leading edge increases after ablation. The fluid-thermal-ablation coupling model can be used to provide reference for the design of a thermal protection system.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/9232684</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0033-795X</orcidid><orcidid>https://orcid.org/0000-0003-2966-0283</orcidid><orcidid>https://orcid.org/0000-0001-5932-4470</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5966
ispartof International journal of aerospace engineering, 2020, Vol.2020 (2020), p.1-13
issn 1687-5966
1687-5974
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2bd6d997429946628c8bbdb1718622d6
source Wiley-Blackwell Open Access Collection; Publicly Available Content (ProQuest)
subjects Aerospace engineering
Aircraft
Algorithms
Carbon
Chemical reactions
Composite materials
Coupling
Energy conservation
Finite element method
Heat flux
Heat transfer
Hypersonic vehicles
Nose cones
Recession
Recessions
Thermal protection
Wall temperature
title Heat Transfer and Ablation Prediction of Carbon/Carbon Composites in a Hypersonic Environment Using Fluid-Thermal-Ablation Multiphysical Coupling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A14%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20and%20Ablation%20Prediction%20of%20Carbon/Carbon%20Composites%20in%20a%20Hypersonic%20Environment%20Using%20Fluid-Thermal-Ablation%20Multiphysical%20Coupling&rft.jtitle=International%20journal%20of%20aerospace%20engineering&rft.au=Sun,%20Xuewen&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1687-5966&rft.eissn=1687-5974&rft_id=info:doi/10.1155/2020/9232684&rft_dat=%3Cproquest_doaj_%3E2355831759%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-9c83097b6d93a4138e90ea15f051392a3b8db66942b8e6ceefd456c69ab887363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2355831759&rft_id=info:pmid/&rfr_iscdi=true