Loading…
Role of Newtonian heating on a Maxwell fluid via special functions: memory impact of local and nonlocal kernels
The impact of Newtonian heating on a time-dependent fractional magnetohydrodynamic (MHD) Maxwell fluid over an unbounded upright plate is investigated. The equations for heat, mass and momentum are established in terms of Caputo (C), Caputo–Fabrizio (CF) and Atangana–Baleanu (ABC) fractional derivat...
Saved in:
Published in: | Advances in difference equations 2021-11, Vol.2021 (1), p.1-20, Article 501 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-1db5cb67e88a5146468f9b98d370dce6c3b8aceb13aedb238d7ec19eee279b1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-1db5cb67e88a5146468f9b98d370dce6c3b8aceb13aedb238d7ec19eee279b1a3 |
container_end_page | 20 |
container_issue | 1 |
container_start_page | 1 |
container_title | Advances in difference equations |
container_volume | 2021 |
creator | Iftikhar, Nazish Javed, Fatima Riaz, Muhammad Bilal Abbas, Muhammad Alsharif, Abdullah M. Hamed, Y. S. |
description | The impact of Newtonian heating on a time-dependent fractional magnetohydrodynamic (MHD) Maxwell fluid over an unbounded upright plate is investigated. The equations for heat, mass and momentum are established in terms of Caputo (C), Caputo–Fabrizio (CF) and Atangana–Baleanu (ABC) fractional derivatives. The solutions are evaluated by employing Laplace transforms. The change in the momentum profile due to variability in the values of parameters is graphically illustrated for all three C, CF and ABC models. The ABC model has proficiently revealed a memory effect. |
doi_str_mv | 10.1186/s13662-021-03658-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2c08fa18d3fe4b7396c7a978564672c5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c08fa18d3fe4b7396c7a978564672c5</doaj_id><sourcerecordid>2600110112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-1db5cb67e88a5146468f9b98d370dce6c3b8aceb13aedb238d7ec19eee279b1a3</originalsourceid><addsrcrecordid>eNp9kdtqGzEQhpfSQB2nL9ArQa630WFX0uYumB4CSQolvRaz2llXzlpypHUcv31kb2hyVRiYA_98M_AXxRdGvzKm5UViQkpeUs5KKmSty_pDMWNSq5LpSn18V38qTlNaUcqbSutZEX6HAUnoyR3uxuAdePIXYXR-SYInQG7heYfDQPph6zry5ICkDVoHebL1dnTBp0uyxnWIe-LWG7DjATYEmxXgO-KDn5oHjB6HdFac9DAk_Pya58Wf79_uFz_Lm18_rhdXN6WteDOWrGtr20qFWkPNKllJ3TdtozuhaGdRWtFqsNgyAdi1XOhOoWUNInLVtAzEvLieuF2AldlEt4a4NwGcOQ5CXBqIo7MDGm6p7oFldo9Vq0QjrYJG6TpfVdzWmXU-sTYxPG4xjWYVttHn9w2XlDKWg2cVn1Q2hpQi9v-uMmoOJpnJJJNNMkeTzAEtpqWUxX6J8Q39n60XqciVxQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600110112</pqid></control><display><type>article</type><title>Role of Newtonian heating on a Maxwell fluid via special functions: memory impact of local and nonlocal kernels</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><creator>Iftikhar, Nazish ; Javed, Fatima ; Riaz, Muhammad Bilal ; Abbas, Muhammad ; Alsharif, Abdullah M. ; Hamed, Y. S.</creator><creatorcontrib>Iftikhar, Nazish ; Javed, Fatima ; Riaz, Muhammad Bilal ; Abbas, Muhammad ; Alsharif, Abdullah M. ; Hamed, Y. S.</creatorcontrib><description>The impact of Newtonian heating on a time-dependent fractional magnetohydrodynamic (MHD) Maxwell fluid over an unbounded upright plate is investigated. The equations for heat, mass and momentum are established in terms of Caputo (C), Caputo–Fabrizio (CF) and Atangana–Baleanu (ABC) fractional derivatives. The solutions are evaluated by employing Laplace transforms. The change in the momentum profile due to variability in the values of parameters is graphically illustrated for all three C, CF and ABC models. The ABC model has proficiently revealed a memory effect.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-021-03658-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Difference and Functional Equations ; Difference Equations ; Fluid flow ; Fractional-order derivatives ; Functional Analysis ; Heating ; Laplace transform ; Laplace transforms ; Magnetohydrodynamics ; Mathematics ; Mathematics and Statistics ; Maxwell fluid ; Maxwell fluids ; MHD ; Momentum ; Newtonian heating ; Ordinary Differential Equations ; Partial Differential Equations ; Special Functions and Orthogonal Polynomials</subject><ispartof>Advances in difference equations, 2021-11, Vol.2021 (1), p.1-20, Article 501</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-1db5cb67e88a5146468f9b98d370dce6c3b8aceb13aedb238d7ec19eee279b1a3</citedby><cites>FETCH-LOGICAL-c429t-1db5cb67e88a5146468f9b98d370dce6c3b8aceb13aedb238d7ec19eee279b1a3</cites><orcidid>0000-0002-0491-1528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2600110112/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2600110112?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Iftikhar, Nazish</creatorcontrib><creatorcontrib>Javed, Fatima</creatorcontrib><creatorcontrib>Riaz, Muhammad Bilal</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Alsharif, Abdullah M.</creatorcontrib><creatorcontrib>Hamed, Y. S.</creatorcontrib><title>Role of Newtonian heating on a Maxwell fluid via special functions: memory impact of local and nonlocal kernels</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>The impact of Newtonian heating on a time-dependent fractional magnetohydrodynamic (MHD) Maxwell fluid over an unbounded upright plate is investigated. The equations for heat, mass and momentum are established in terms of Caputo (C), Caputo–Fabrizio (CF) and Atangana–Baleanu (ABC) fractional derivatives. The solutions are evaluated by employing Laplace transforms. The change in the momentum profile due to variability in the values of parameters is graphically illustrated for all three C, CF and ABC models. The ABC model has proficiently revealed a memory effect.</description><subject>Analysis</subject><subject>Difference and Functional Equations</subject><subject>Difference Equations</subject><subject>Fluid flow</subject><subject>Fractional-order derivatives</subject><subject>Functional Analysis</subject><subject>Heating</subject><subject>Laplace transform</subject><subject>Laplace transforms</subject><subject>Magnetohydrodynamics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maxwell fluid</subject><subject>Maxwell fluids</subject><subject>MHD</subject><subject>Momentum</subject><subject>Newtonian heating</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Special Functions and Orthogonal Polynomials</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kdtqGzEQhpfSQB2nL9ArQa630WFX0uYumB4CSQolvRaz2llXzlpypHUcv31kb2hyVRiYA_98M_AXxRdGvzKm5UViQkpeUs5KKmSty_pDMWNSq5LpSn18V38qTlNaUcqbSutZEX6HAUnoyR3uxuAdePIXYXR-SYInQG7heYfDQPph6zry5ICkDVoHebL1dnTBp0uyxnWIe-LWG7DjATYEmxXgO-KDn5oHjB6HdFac9DAk_Pya58Wf79_uFz_Lm18_rhdXN6WteDOWrGtr20qFWkPNKllJ3TdtozuhaGdRWtFqsNgyAdi1XOhOoWUNInLVtAzEvLieuF2AldlEt4a4NwGcOQ5CXBqIo7MDGm6p7oFldo9Vq0QjrYJG6TpfVdzWmXU-sTYxPG4xjWYVttHn9w2XlDKWg2cVn1Q2hpQi9v-uMmoOJpnJJJNNMkeTzAEtpqWUxX6J8Q39n60XqciVxQ</recordid><startdate>20211121</startdate><enddate>20211121</enddate><creator>Iftikhar, Nazish</creator><creator>Javed, Fatima</creator><creator>Riaz, Muhammad Bilal</creator><creator>Abbas, Muhammad</creator><creator>Alsharif, Abdullah M.</creator><creator>Hamed, Y. S.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0491-1528</orcidid></search><sort><creationdate>20211121</creationdate><title>Role of Newtonian heating on a Maxwell fluid via special functions: memory impact of local and nonlocal kernels</title><author>Iftikhar, Nazish ; Javed, Fatima ; Riaz, Muhammad Bilal ; Abbas, Muhammad ; Alsharif, Abdullah M. ; Hamed, Y. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-1db5cb67e88a5146468f9b98d370dce6c3b8aceb13aedb238d7ec19eee279b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Difference and Functional Equations</topic><topic>Difference Equations</topic><topic>Fluid flow</topic><topic>Fractional-order derivatives</topic><topic>Functional Analysis</topic><topic>Heating</topic><topic>Laplace transform</topic><topic>Laplace transforms</topic><topic>Magnetohydrodynamics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maxwell fluid</topic><topic>Maxwell fluids</topic><topic>MHD</topic><topic>Momentum</topic><topic>Newtonian heating</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Special Functions and Orthogonal Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iftikhar, Nazish</creatorcontrib><creatorcontrib>Javed, Fatima</creatorcontrib><creatorcontrib>Riaz, Muhammad Bilal</creatorcontrib><creatorcontrib>Abbas, Muhammad</creatorcontrib><creatorcontrib>Alsharif, Abdullah M.</creatorcontrib><creatorcontrib>Hamed, Y. S.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iftikhar, Nazish</au><au>Javed, Fatima</au><au>Riaz, Muhammad Bilal</au><au>Abbas, Muhammad</au><au>Alsharif, Abdullah M.</au><au>Hamed, Y. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Newtonian heating on a Maxwell fluid via special functions: memory impact of local and nonlocal kernels</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2021-11-21</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>501</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>The impact of Newtonian heating on a time-dependent fractional magnetohydrodynamic (MHD) Maxwell fluid over an unbounded upright plate is investigated. The equations for heat, mass and momentum are established in terms of Caputo (C), Caputo–Fabrizio (CF) and Atangana–Baleanu (ABC) fractional derivatives. The solutions are evaluated by employing Laplace transforms. The change in the momentum profile due to variability in the values of parameters is graphically illustrated for all three C, CF and ABC models. The ABC model has proficiently revealed a memory effect.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-021-03658-5</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0491-1528</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1847 |
ispartof | Advances in difference equations, 2021-11, Vol.2021 (1), p.1-20, Article 501 |
issn | 1687-1847 1687-1839 1687-1847 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2c08fa18d3fe4b7396c7a978564672c5 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals |
subjects | Analysis Difference and Functional Equations Difference Equations Fluid flow Fractional-order derivatives Functional Analysis Heating Laplace transform Laplace transforms Magnetohydrodynamics Mathematics Mathematics and Statistics Maxwell fluid Maxwell fluids MHD Momentum Newtonian heating Ordinary Differential Equations Partial Differential Equations Special Functions and Orthogonal Polynomials |
title | Role of Newtonian heating on a Maxwell fluid via special functions: memory impact of local and nonlocal kernels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Newtonian%20heating%20on%20a%20Maxwell%20fluid%20via%20special%20functions:%20memory%20impact%20of%20local%20and%20nonlocal%20kernels&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Iftikhar,%20Nazish&rft.date=2021-11-21&rft.volume=2021&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=501&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-021-03658-5&rft_dat=%3Cproquest_doaj_%3E2600110112%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-1db5cb67e88a5146468f9b98d370dce6c3b8aceb13aedb238d7ec19eee279b1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2600110112&rft_id=info:pmid/&rfr_iscdi=true |