Loading…

Microstructure and mechanical properties of laser welded Ti–10V–2Fe–3Al (Ti1023) titanium alloy

The microstructure, microhardness, tensile properties, and fracture characteristics of the laser welded Ti–10V–2Fe–3Al (Ti1023) titanium alloy in the as-welded condition were examined. The mechanical properties were related to the microstructure development across the weld. In the base material (BM)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research and technology 2020-07, Vol.9 (4), p.7721-7731
Main Authors: Chamanfar, Ahmad, Huang, Meng-Fu, Pasang, Timotius, Tsukamoto, Masahiro, Misiolek, Wojciech Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The microstructure, microhardness, tensile properties, and fracture characteristics of the laser welded Ti–10V–2Fe–3Al (Ti1023) titanium alloy in the as-welded condition were examined. The mechanical properties were related to the microstructure development across the weld. In the base material (BM), the primary α phase with spherical and lath morphologies was dispersed in the β matrix. The volume fraction of the α phase in the heat affected zone (HAZ) decreased to some extent compared to the BM as a result of its partial dissolution and/or transformation to the β phase. In the fusion zone (FZ), primary α phase was completely transformed to the β phase. The BM exhibited a higher hardness than HAZ and FZ due to a higher volume fraction of the primary α phase, which is harder than β phase. The yield strength (YS) and ultimate tensile strength (UTS) of the weldments were somewhat lower than those of the BM due to the presence of a softer phase in the FZ and a lower volume fraction of the α phase in the HAZ. Also, the presence of porosity, undercut, concavity, and coarse columnar β grains in the FZ contributed to lower YS, UTS, and total elongation in the weldments in comparison to the unwelded material. Examination of the fracture surface in the weldment tensile samples indicated a mixed brittle and ductile fracture mode.
ISSN:2238-7854
DOI:10.1016/j.jmrt.2020.04.028