Loading…

Habitat Prediction of Northwest Pacific Saury Based on Multi-Source Heterogeneous Remote Sensing Data Fusion

Accurate habitat prediction is important to improve fishing efficiency. Most of the current habitat-prediction studies use the single-source datasets and the sequence model based on single-source datasets, which, to a certain extent, limits the further improvement of prediction accuracy. In this pap...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2022-10, Vol.14 (19), p.5061
Main Authors: Han, Yanling, Guo, Junyan, Ma, Zhenling, Wang, Jing, Zhou, Ruyan, Zhang, Yun, Hong, Zhonghua, Pan, Haiyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate habitat prediction is important to improve fishing efficiency. Most of the current habitat-prediction studies use the single-source datasets and the sequence model based on single-source datasets, which, to a certain extent, limits the further improvement of prediction accuracy. In this paper, we propose a habitat-prediction method based on the multi-source heterogeneous remote-sensing data fusion, using product-level remote-sensing data and L1B-level original remote-sensing data. We designed a heterogeneous data feature extraction model based on a Convolution Neural Network (CNN) and Long and Short-Term Memory network (LSTM), and we designed a decision-fusion model based on multi-source heterogeneous data feature extraction. In the habitat prediction for the Northwest Pacific Saury, the mean R2 of the model reaches 0.9901 and the RMSE decreases to 0.01588 in the model validation experiment. It is significantly better than the results of other models, with the single datasets as input. Moreover, the model performs well in the generalization experiment because we limited the prediction error to less than 8%. Compared with the single-source sequence network model in the existing literature, the proposed method in this paper solves the problem of ineffective fusion caused by the differences in the structure and size of heterogeneous data through multilevel feature fusion and decision fusion, and it deeply explores the features of remote-sensing fishery data with different data structures and sizes. It can effectively improve the accuracy of fishery prediction, proving the feasibility and advancement of using multi-source remote-sensing data for habitat prediction. It also provides new methods and ideas for future research in the field of habitat prediction.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14195061