Loading…

Constraining the geothermal parameters of in situ Rb–Sr dating on Proterozoic shales and their subsequent applications

Recent developments in tandem laser ablation mass spectrometer technology have demonstrated the capacity for separating parent and daughter isotopes of the same mass online. As a result, beta-decay chronometers can now be applied to the geological archive in situ as opposed to through traditional wh...

Full description

Saved in:
Bibliographic Details
Published in:Geochronology (Göttingen. Online) 2022-09, Vol.4 (2), p.577-600
Main Authors: Subarkah, Darwinaji, Nixon, Angus L., Jimenez, Monica, Collins, Alan S., Blades, Morgan L., Farkaš, Juraj, Gilbert, Sarah E., Holford, Simon, Jarrett, Amber
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent developments in tandem laser ablation mass spectrometer technology have demonstrated the capacity for separating parent and daughter isotopes of the same mass online. As a result, beta-decay chronometers can now be applied to the geological archive in situ as opposed to through traditional whole-rock digestions. One novel application of this technique is the in situ Rb–Sr dating of Proterozoic shales that are dominated by authigenic clays such as illite. This method can provide a depositional window for shales by differentiating signatures of early diagenetic processes versus late-stage secondary alteration. However, the hydrothermal sensitivity of the Rb–Sr isotopic system across geological timescales in shale-hosted clay minerals is not well understood. As such, we dated the Mesoproterozoic Velkerri Formation from the Altree 2 well in the Beetaloo Sub-basin (greater McArthur Basin), northern Australia, using this approach. We then constrained the thermal history of these units using common hydrocarbon maturity indicators and modelled effects of contact heating due to the intrusion of the Derim Derim Dolerite. In situ Rb–Sr dating of mature, oil-prone shales in the diagenetic zone from the Velkerri Formation yielded ages of 1448 ± 81, 1434 ± 19, and 1421 ± 139 Ma. These results agree with previous Re–Os dating of the unit and are interpreted as recording the timing of an early diagenetic event soon after deposition. Conversely, overmature, gas-prone shales in the anchizone sourced from deeper within the borehole were dated at 1322 ± 93 and 1336 ± 40 Ma. These ages are younger than the expected depositional window for the Velkerri Formation. Instead, they are consistent with the age of the Derim Derim Dolerite mafic intrusion intersected 800 m below the Velkerri Formation. Thermal modelling suggests that a single intrusion of 75 m thickness would have been capable of producing a significant hydrothermal perturbation radiating from the sill top. The intrusion width proposed by this model is consistent with similar Derim Derim Dolerite sill thicknesses found elsewhere in the McArthur Basin. The extent of the hydrothermal aureole induced by this intrusion coincides with the window in which kerogen from the Velkerri Formation becomes overmature. As a result, the mafic intrusion intersected here is interpreted to have caused kerogen in these shales to enter the gas window, induced fluids that mobilize trace elements, and reset the Rb–Sr chronometer. Cons
ISSN:2628-3719
2628-3719
DOI:10.5194/gchron-4-577-2022