Loading…
Fixed Point Results in Orthogonal Neutrosophic Metric Spaces
Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing inconsistent, indeterminate, and imprecise data. T...
Saved in:
Published in: | Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Complexity (New York, N.Y.) |
container_volume | 2021 |
creator | Ishtiaq, Umar Javed, Khalil Uddin, Fahim Sen, Manuel de la Ahmed, Khalil Ali, Muhammad Usman |
description | Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing inconsistent, indeterminate, and imprecise data. The notion of intuitionistic fuzzy metric space is useful in modelling some phenomena, where it is necessary to study the relationship between two probability functions. In this study, the concept of an orthogonal neutrosophic metric space is initiated. It is a generalization of the neutrosophic metric space. Some fixed point results are investigated in this setting. For the validity of the obtained results, some nontrivial examples are given. |
doi_str_mv | 10.1155/2021/2809657 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2c2e4f1c83c3498e8fba8c0cbbecb606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c2e4f1c83c3498e8fba8c0cbbecb606</doaj_id><sourcerecordid>2563361478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhosoOKd3_oCCl1p3krRJCt6IOB1MJ35chzRJt4zazCRF_fd2dnjp1Xs4PDyH8ybJKYJLhIpiggGjCeZQ0oLtJSMEZZlBgen-dmY0w4yzw-QohDVADxE2Sq6m9svo9MnZNqbPJnRNDKlt04WPK7d0rWzSR9NF74LbrKxKH0z0fbxspDLhODmoZRPMyS7Hydv09vXmPpsv7mY31_NM5UBiRkGXVFUSMYIpZhUwDZrkCHIJdV6CNroGbmSJcokUV5QYyVlRFwRMRTQh42Q2eLWTa7Hx9l36b-GkFb8L55dC-mhVYwRW2OR1byGK5CU3vK4kV6CqyqiKAu1dZ4Nr491HZ0IUa9f5_s8gcEEJoShnvKcuBkr1nwdv6r-rCMS2a7HtWuy67vHzAV_ZVstP-z_9A_rGfPA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563361478</pqid></control><display><type>article</type><title>Fixed Point Results in Orthogonal Neutrosophic Metric Spaces</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Ishtiaq, Umar ; Javed, Khalil ; Uddin, Fahim ; Sen, Manuel de la ; Ahmed, Khalil ; Ali, Muhammad Usman</creator><contributor>Munoz-Pacheco, Jesus M. ; Jesus M Munoz-Pacheco</contributor><creatorcontrib>Ishtiaq, Umar ; Javed, Khalil ; Uddin, Fahim ; Sen, Manuel de la ; Ahmed, Khalil ; Ali, Muhammad Usman ; Munoz-Pacheco, Jesus M. ; Jesus M Munoz-Pacheco</creatorcontrib><description>Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing inconsistent, indeterminate, and imprecise data. The notion of intuitionistic fuzzy metric space is useful in modelling some phenomena, where it is necessary to study the relationship between two probability functions. In this study, the concept of an orthogonal neutrosophic metric space is initiated. It is a generalization of the neutrosophic metric space. Some fixed point results are investigated in this setting. For the validity of the obtained results, some nontrivial examples are given.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2021/2809657</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Fixed points (mathematics) ; Fuzzy logic ; Fuzzy sets ; Metric space</subject><ispartof>Complexity (New York, N.Y.), 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Umar Ishtiaq et al.</rights><rights>Copyright © 2021 Umar Ishtiaq et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33</citedby><cites>FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33</cites><orcidid>0000-0003-4648-9318 ; 0000-0002-2047-8082 ; 0000-0001-9320-9433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Munoz-Pacheco, Jesus M.</contributor><contributor>Jesus M Munoz-Pacheco</contributor><creatorcontrib>Ishtiaq, Umar</creatorcontrib><creatorcontrib>Javed, Khalil</creatorcontrib><creatorcontrib>Uddin, Fahim</creatorcontrib><creatorcontrib>Sen, Manuel de la</creatorcontrib><creatorcontrib>Ahmed, Khalil</creatorcontrib><creatorcontrib>Ali, Muhammad Usman</creatorcontrib><title>Fixed Point Results in Orthogonal Neutrosophic Metric Spaces</title><title>Complexity (New York, N.Y.)</title><description>Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing inconsistent, indeterminate, and imprecise data. The notion of intuitionistic fuzzy metric space is useful in modelling some phenomena, where it is necessary to study the relationship between two probability functions. In this study, the concept of an orthogonal neutrosophic metric space is initiated. It is a generalization of the neutrosophic metric space. Some fixed point results are investigated in this setting. For the validity of the obtained results, some nontrivial examples are given.</description><subject>Fixed points (mathematics)</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Metric space</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kF1LwzAUhosoOKd3_oCCl1p3krRJCt6IOB1MJ35chzRJt4zazCRF_fd2dnjp1Xs4PDyH8ybJKYJLhIpiggGjCeZQ0oLtJSMEZZlBgen-dmY0w4yzw-QohDVADxE2Sq6m9svo9MnZNqbPJnRNDKlt04WPK7d0rWzSR9NF74LbrKxKH0z0fbxspDLhODmoZRPMyS7Hydv09vXmPpsv7mY31_NM5UBiRkGXVFUSMYIpZhUwDZrkCHIJdV6CNroGbmSJcokUV5QYyVlRFwRMRTQh42Q2eLWTa7Hx9l36b-GkFb8L55dC-mhVYwRW2OR1byGK5CU3vK4kV6CqyqiKAu1dZ4Nr491HZ0IUa9f5_s8gcEEJoShnvKcuBkr1nwdv6r-rCMS2a7HtWuy67vHzAV_ZVstP-z_9A_rGfPA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ishtiaq, Umar</creator><creator>Javed, Khalil</creator><creator>Uddin, Fahim</creator><creator>Sen, Manuel de la</creator><creator>Ahmed, Khalil</creator><creator>Ali, Muhammad Usman</creator><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4648-9318</orcidid><orcidid>https://orcid.org/0000-0002-2047-8082</orcidid><orcidid>https://orcid.org/0000-0001-9320-9433</orcidid></search><sort><creationdate>2021</creationdate><title>Fixed Point Results in Orthogonal Neutrosophic Metric Spaces</title><author>Ishtiaq, Umar ; Javed, Khalil ; Uddin, Fahim ; Sen, Manuel de la ; Ahmed, Khalil ; Ali, Muhammad Usman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fixed points (mathematics)</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Metric space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishtiaq, Umar</creatorcontrib><creatorcontrib>Javed, Khalil</creatorcontrib><creatorcontrib>Uddin, Fahim</creatorcontrib><creatorcontrib>Sen, Manuel de la</creatorcontrib><creatorcontrib>Ahmed, Khalil</creatorcontrib><creatorcontrib>Ali, Muhammad Usman</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishtiaq, Umar</au><au>Javed, Khalil</au><au>Uddin, Fahim</au><au>Sen, Manuel de la</au><au>Ahmed, Khalil</au><au>Ali, Muhammad Usman</au><au>Munoz-Pacheco, Jesus M.</au><au>Jesus M Munoz-Pacheco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed Point Results in Orthogonal Neutrosophic Metric Spaces</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing inconsistent, indeterminate, and imprecise data. The notion of intuitionistic fuzzy metric space is useful in modelling some phenomena, where it is necessary to study the relationship between two probability functions. In this study, the concept of an orthogonal neutrosophic metric space is initiated. It is a generalization of the neutrosophic metric space. Some fixed point results are investigated in this setting. For the validity of the obtained results, some nontrivial examples are given.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2021/2809657</doi><orcidid>https://orcid.org/0000-0003-4648-9318</orcidid><orcidid>https://orcid.org/0000-0002-2047-8082</orcidid><orcidid>https://orcid.org/0000-0001-9320-9433</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-2787 |
ispartof | Complexity (New York, N.Y.), 2021, Vol.2021 (1) |
issn | 1076-2787 1099-0526 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2c2e4f1c83c3498e8fba8c0cbbecb606 |
source | Open Access: Wiley-Blackwell Open Access Journals |
subjects | Fixed points (mathematics) Fuzzy logic Fuzzy sets Metric space |
title | Fixed Point Results in Orthogonal Neutrosophic Metric Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20Point%20Results%20in%20Orthogonal%20Neutrosophic%20Metric%20Spaces&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Ishtiaq,%20Umar&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2021/2809657&rft_dat=%3Cproquest_doaj_%3E2563361478%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563361478&rft_id=info:pmid/&rfr_iscdi=true |