Loading…

Fixed Point Results in Orthogonal Neutrosophic Metric Spaces

Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing inconsistent, indeterminate, and imprecise data. T...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1)
Main Authors: Ishtiaq, Umar, Javed, Khalil, Uddin, Fahim, Sen, Manuel de la, Ahmed, Khalil, Ali, Muhammad Usman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33
cites cdi_FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33
container_end_page
container_issue 1
container_start_page
container_title Complexity (New York, N.Y.)
container_volume 2021
creator Ishtiaq, Umar
Javed, Khalil
Uddin, Fahim
Sen, Manuel de la
Ahmed, Khalil
Ali, Muhammad Usman
description Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing inconsistent, indeterminate, and imprecise data. The notion of intuitionistic fuzzy metric space is useful in modelling some phenomena, where it is necessary to study the relationship between two probability functions. In this study, the concept of an orthogonal neutrosophic metric space is initiated. It is a generalization of the neutrosophic metric space. Some fixed point results are investigated in this setting. For the validity of the obtained results, some nontrivial examples are given.
doi_str_mv 10.1155/2021/2809657
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2c2e4f1c83c3498e8fba8c0cbbecb606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c2e4f1c83c3498e8fba8c0cbbecb606</doaj_id><sourcerecordid>2563361478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhosoOKd3_oCCl1p3krRJCt6IOB1MJ35chzRJt4zazCRF_fd2dnjp1Xs4PDyH8ybJKYJLhIpiggGjCeZQ0oLtJSMEZZlBgen-dmY0w4yzw-QohDVADxE2Sq6m9svo9MnZNqbPJnRNDKlt04WPK7d0rWzSR9NF74LbrKxKH0z0fbxspDLhODmoZRPMyS7Hydv09vXmPpsv7mY31_NM5UBiRkGXVFUSMYIpZhUwDZrkCHIJdV6CNroGbmSJcokUV5QYyVlRFwRMRTQh42Q2eLWTa7Hx9l36b-GkFb8L55dC-mhVYwRW2OR1byGK5CU3vK4kV6CqyqiKAu1dZ4Nr491HZ0IUa9f5_s8gcEEJoShnvKcuBkr1nwdv6r-rCMS2a7HtWuy67vHzAV_ZVstP-z_9A_rGfPA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563361478</pqid></control><display><type>article</type><title>Fixed Point Results in Orthogonal Neutrosophic Metric Spaces</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><creator>Ishtiaq, Umar ; Javed, Khalil ; Uddin, Fahim ; Sen, Manuel de la ; Ahmed, Khalil ; Ali, Muhammad Usman</creator><contributor>Munoz-Pacheco, Jesus M. ; Jesus M Munoz-Pacheco</contributor><creatorcontrib>Ishtiaq, Umar ; Javed, Khalil ; Uddin, Fahim ; Sen, Manuel de la ; Ahmed, Khalil ; Ali, Muhammad Usman ; Munoz-Pacheco, Jesus M. ; Jesus M Munoz-Pacheco</creatorcontrib><description>Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing inconsistent, indeterminate, and imprecise data. The notion of intuitionistic fuzzy metric space is useful in modelling some phenomena, where it is necessary to study the relationship between two probability functions. In this study, the concept of an orthogonal neutrosophic metric space is initiated. It is a generalization of the neutrosophic metric space. Some fixed point results are investigated in this setting. For the validity of the obtained results, some nontrivial examples are given.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2021/2809657</identifier><language>eng</language><publisher>Hoboken: Hindawi</publisher><subject>Fixed points (mathematics) ; Fuzzy logic ; Fuzzy sets ; Metric space</subject><ispartof>Complexity (New York, N.Y.), 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Umar Ishtiaq et al.</rights><rights>Copyright © 2021 Umar Ishtiaq et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33</citedby><cites>FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33</cites><orcidid>0000-0003-4648-9318 ; 0000-0002-2047-8082 ; 0000-0001-9320-9433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Munoz-Pacheco, Jesus M.</contributor><contributor>Jesus M Munoz-Pacheco</contributor><creatorcontrib>Ishtiaq, Umar</creatorcontrib><creatorcontrib>Javed, Khalil</creatorcontrib><creatorcontrib>Uddin, Fahim</creatorcontrib><creatorcontrib>Sen, Manuel de la</creatorcontrib><creatorcontrib>Ahmed, Khalil</creatorcontrib><creatorcontrib>Ali, Muhammad Usman</creatorcontrib><title>Fixed Point Results in Orthogonal Neutrosophic Metric Spaces</title><title>Complexity (New York, N.Y.)</title><description>Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing inconsistent, indeterminate, and imprecise data. The notion of intuitionistic fuzzy metric space is useful in modelling some phenomena, where it is necessary to study the relationship between two probability functions. In this study, the concept of an orthogonal neutrosophic metric space is initiated. It is a generalization of the neutrosophic metric space. Some fixed point results are investigated in this setting. For the validity of the obtained results, some nontrivial examples are given.</description><subject>Fixed points (mathematics)</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Metric space</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kF1LwzAUhosoOKd3_oCCl1p3krRJCt6IOB1MJ35chzRJt4zazCRF_fd2dnjp1Xs4PDyH8ybJKYJLhIpiggGjCeZQ0oLtJSMEZZlBgen-dmY0w4yzw-QohDVADxE2Sq6m9svo9MnZNqbPJnRNDKlt04WPK7d0rWzSR9NF74LbrKxKH0z0fbxspDLhODmoZRPMyS7Hydv09vXmPpsv7mY31_NM5UBiRkGXVFUSMYIpZhUwDZrkCHIJdV6CNroGbmSJcokUV5QYyVlRFwRMRTQh42Q2eLWTa7Hx9l36b-GkFb8L55dC-mhVYwRW2OR1byGK5CU3vK4kV6CqyqiKAu1dZ4Nr491HZ0IUa9f5_s8gcEEJoShnvKcuBkr1nwdv6r-rCMS2a7HtWuy67vHzAV_ZVstP-z_9A_rGfPA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ishtiaq, Umar</creator><creator>Javed, Khalil</creator><creator>Uddin, Fahim</creator><creator>Sen, Manuel de la</creator><creator>Ahmed, Khalil</creator><creator>Ali, Muhammad Usman</creator><general>Hindawi</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4648-9318</orcidid><orcidid>https://orcid.org/0000-0002-2047-8082</orcidid><orcidid>https://orcid.org/0000-0001-9320-9433</orcidid></search><sort><creationdate>2021</creationdate><title>Fixed Point Results in Orthogonal Neutrosophic Metric Spaces</title><author>Ishtiaq, Umar ; Javed, Khalil ; Uddin, Fahim ; Sen, Manuel de la ; Ahmed, Khalil ; Ali, Muhammad Usman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fixed points (mathematics)</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Metric space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishtiaq, Umar</creatorcontrib><creatorcontrib>Javed, Khalil</creatorcontrib><creatorcontrib>Uddin, Fahim</creatorcontrib><creatorcontrib>Sen, Manuel de la</creatorcontrib><creatorcontrib>Ahmed, Khalil</creatorcontrib><creatorcontrib>Ali, Muhammad Usman</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishtiaq, Umar</au><au>Javed, Khalil</au><au>Uddin, Fahim</au><au>Sen, Manuel de la</au><au>Ahmed, Khalil</au><au>Ali, Muhammad Usman</au><au>Munoz-Pacheco, Jesus M.</au><au>Jesus M Munoz-Pacheco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed Point Results in Orthogonal Neutrosophic Metric Spaces</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>Neutrosophy deals with neutrosophic logic, probability, and sets. Actually, the neutrosophic set is a generalization of the classical set, fuzzy set, and intuitionistic fuzzy set. A neutrosophic set is a mathematical notion serving issues containing inconsistent, indeterminate, and imprecise data. The notion of intuitionistic fuzzy metric space is useful in modelling some phenomena, where it is necessary to study the relationship between two probability functions. In this study, the concept of an orthogonal neutrosophic metric space is initiated. It is a generalization of the neutrosophic metric space. Some fixed point results are investigated in this setting. For the validity of the obtained results, some nontrivial examples are given.</abstract><cop>Hoboken</cop><pub>Hindawi</pub><doi>10.1155/2021/2809657</doi><orcidid>https://orcid.org/0000-0003-4648-9318</orcidid><orcidid>https://orcid.org/0000-0002-2047-8082</orcidid><orcidid>https://orcid.org/0000-0001-9320-9433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2021, Vol.2021 (1)
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2c2e4f1c83c3498e8fba8c0cbbecb606
source Open Access: Wiley-Blackwell Open Access Journals
subjects Fixed points (mathematics)
Fuzzy logic
Fuzzy sets
Metric space
title Fixed Point Results in Orthogonal Neutrosophic Metric Spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20Point%20Results%20in%20Orthogonal%20Neutrosophic%20Metric%20Spaces&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Ishtiaq,%20Umar&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2021/2809657&rft_dat=%3Cproquest_doaj_%3E2563361478%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-60d96cba1732627b07d0d34104a0f490dedf08ea914a1c8c63ea875f530eb3d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563361478&rft_id=info:pmid/&rfr_iscdi=true