Loading…

Detection of Smoking in Indoor Environment Using Machine Learning

Revealed by the effect of indoor pollutants on the human body, indoor air quality management is increasing. In particular, indoor smoking is one of the common sources of indoor air pollution, and its harmfulness has been well studied. Accordingly, the regulation of indoor smoking is emerging all ove...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-12, Vol.10 (24), p.8912
Main Author: Cho, Jae Hyuk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Revealed by the effect of indoor pollutants on the human body, indoor air quality management is increasing. In particular, indoor smoking is one of the common sources of indoor air pollution, and its harmfulness has been well studied. Accordingly, the regulation of indoor smoking is emerging all over the world. Technical approaches are also being carried out to regulate indoor smoking, but research is focused on detection hardware. This study includes analytical and machine learning approach of cigarette detection by detecting typical gases (total volatile organic compounds, CO2 etc.) being collected from IoT sensors. In detail, data set for machine learning was built using IoT sensors, including training data set securely collected from the rotary smoking machine and test data set gained from actual indoor environment with spontaneous smokers. The prediction accuracy was evaluated with accuracy, precision, and recall. As a result, the non-linear support vector machine (SVM) model showed the best performance with 93% in accuracy and 88% in the F1 score. The supervised learning k-nearest neighbors (KNN) and multilayer perceptron (MLP) models also showed relatively fine results, but shows effectivity simplifying prediction with binary classification to improve accuracy and speed.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10248912