Loading…
Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?
Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar en...
Saved in:
Published in: | Global challenges 2023-03, Vol.7 (3), p.2200165-n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73 |
---|---|
cites | cdi_FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73 |
container_end_page | n/a |
container_issue | 3 |
container_start_page | 2200165 |
container_title | Global challenges |
container_volume | 7 |
creator | Isaacs, Mark Garcia‐Navarro, Julio Ong, Wee‐Jun Jiménez‐Calvo, Pablo |
description | Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting's beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar‐driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large‐scale examples. In order for solar‐assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market.
The 2050 roadmap strategies and net zero emission goals are made possible through the adoption of novel greener and more sustainable processes. In this regard, exploiting solar irradiation (a plentiful energy source) is advantageous for developing green hydrogen technologies. Photocatalytic devices are suited for large‐scale plants proliferation. Three case studies from France, Spain, and Japan are presented. |
doi_str_mv | 10.1002/gch2.202200165 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2c5da2ef8f75408da3ca7dfa608ad07a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c5da2ef8f75408da3ca7dfa608ad07a</doaj_id><sourcerecordid>2786513061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhlcIRKvQK0dkiQuXBNvrj91ThaKSRKqgh3LhYjn2eHcjZ13sXSD_Hi8JoeXCyaOZZ16PX09RvCZ4QTCm7xvT0gXFlGJMBH9WXFLMxVwIJp4_ii-Kq5R2ODdQgsuqellclKImmAlxWbhNQndtGILRg_aH1CU0tIA-wc8B3YNp--BDc0BDQHcx2NEAWkWAHq0PNoYmB7ly0-uth1PfgL5CzLl9l1IX-oRWQfvrV8ULp32Cq9M5K758vLlfrue3n1eb5YfbueGS8TmtCCFWswp4SVjNnGPYArPcWaCSkdpQWgnKHTcW87out5yVW-nElHFWlrNic9S1Qe_UQ-z2Oh5U0J36nQixUToOnfGgqOFWU3CVk5zhyurSaGmdFrjSFkudta6PWg_jdg_WQD9E7Z-IPq30Xaua8F3lv8lm58lmxbuTQgzfRkiDyq4Y8F73EMakqKwEJyUWJKNv_0F3YYx99mqiOJEllRO1OFImhpQiuPM0BE_XUjWthDqvRG548_gNZ_zPAmSgPgI_Og-H_8ip1XJN_4r_AoBUwYw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785173271</pqid></control><display><type>article</type><title>Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?</title><source>Publicly Available Content Database</source><source>Wiley_OA刊</source><source>PubMed Central</source><creator>Isaacs, Mark ; Garcia‐Navarro, Julio ; Ong, Wee‐Jun ; Jiménez‐Calvo, Pablo</creator><creatorcontrib>Isaacs, Mark ; Garcia‐Navarro, Julio ; Ong, Wee‐Jun ; Jiménez‐Calvo, Pablo</creatorcontrib><description>Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting's beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar‐driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large‐scale examples. In order for solar‐assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market.
The 2050 roadmap strategies and net zero emission goals are made possible through the adoption of novel greener and more sustainable processes. In this regard, exploiting solar irradiation (a plentiful energy source) is advantageous for developing green hydrogen technologies. Photocatalytic devices are suited for large‐scale plants proliferation. Three case studies from France, Spain, and Japan are presented.</description><identifier>ISSN: 2056-6646</identifier><identifier>EISSN: 2056-6646</identifier><identifier>DOI: 10.1002/gch2.202200165</identifier><identifier>PMID: 36910466</identifier><language>eng</language><publisher>Germany: John Wiley & Sons, Inc</publisher><subject>Adsorption ; Alternative energy sources ; Carbon dioxide ; Catalysts ; Emissions ; Energy security ; Energy sources ; Fossil fuels ; Fuel cells ; Gases ; Green hydrogen ; Hydrogen ; Laboratories ; Natural gas ; Net zero ; net zero emissions ; Observatories ; Paris Agreement ; Photocatalysis ; Photosynthesis ; Renewable energy ; roadmap ; Solar energy ; technological development ; Technology assessment ; Water splitting</subject><ispartof>Global challenges, 2023-03, Vol.7 (3), p.2200165-n/a</ispartof><rights>2022 The Authors. published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Global Challenges published by Wiley‐VCH GmbH.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73</citedby><cites>FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73</cites><orcidid>0000-0002-5124-1934 ; 0000-0002-9826-6995 ; 0000-0002-0335-4272 ; 0000-0002-3177-5023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785173271/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785173271?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36910466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isaacs, Mark</creatorcontrib><creatorcontrib>Garcia‐Navarro, Julio</creatorcontrib><creatorcontrib>Ong, Wee‐Jun</creatorcontrib><creatorcontrib>Jiménez‐Calvo, Pablo</creatorcontrib><title>Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?</title><title>Global challenges</title><addtitle>Glob Chall</addtitle><description>Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting's beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar‐driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large‐scale examples. In order for solar‐assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market.
The 2050 roadmap strategies and net zero emission goals are made possible through the adoption of novel greener and more sustainable processes. In this regard, exploiting solar irradiation (a plentiful energy source) is advantageous for developing green hydrogen technologies. Photocatalytic devices are suited for large‐scale plants proliferation. Three case studies from France, Spain, and Japan are presented.</description><subject>Adsorption</subject><subject>Alternative energy sources</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Emissions</subject><subject>Energy security</subject><subject>Energy sources</subject><subject>Fossil fuels</subject><subject>Fuel cells</subject><subject>Gases</subject><subject>Green hydrogen</subject><subject>Hydrogen</subject><subject>Laboratories</subject><subject>Natural gas</subject><subject>Net zero</subject><subject>net zero emissions</subject><subject>Observatories</subject><subject>Paris Agreement</subject><subject>Photocatalysis</subject><subject>Photosynthesis</subject><subject>Renewable energy</subject><subject>roadmap</subject><subject>Solar energy</subject><subject>technological development</subject><subject>Technology assessment</subject><subject>Water splitting</subject><issn>2056-6646</issn><issn>2056-6646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1vEzEQhlcIRKvQK0dkiQuXBNvrj91ThaKSRKqgh3LhYjn2eHcjZ13sXSD_Hi8JoeXCyaOZZ16PX09RvCZ4QTCm7xvT0gXFlGJMBH9WXFLMxVwIJp4_ii-Kq5R2ODdQgsuqellclKImmAlxWbhNQndtGILRg_aH1CU0tIA-wc8B3YNp--BDc0BDQHcx2NEAWkWAHq0PNoYmB7ly0-uth1PfgL5CzLl9l1IX-oRWQfvrV8ULp32Cq9M5K758vLlfrue3n1eb5YfbueGS8TmtCCFWswp4SVjNnGPYArPcWaCSkdpQWgnKHTcW87out5yVW-nElHFWlrNic9S1Qe_UQ-z2Oh5U0J36nQixUToOnfGgqOFWU3CVk5zhyurSaGmdFrjSFkudta6PWg_jdg_WQD9E7Z-IPq30Xaua8F3lv8lm58lmxbuTQgzfRkiDyq4Y8F73EMakqKwEJyUWJKNv_0F3YYx99mqiOJEllRO1OFImhpQiuPM0BE_XUjWthDqvRG548_gNZ_zPAmSgPgI_Og-H_8ip1XJN_4r_AoBUwYw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Isaacs, Mark</creator><creator>Garcia‐Navarro, Julio</creator><creator>Ong, Wee‐Jun</creator><creator>Jiménez‐Calvo, Pablo</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5124-1934</orcidid><orcidid>https://orcid.org/0000-0002-9826-6995</orcidid><orcidid>https://orcid.org/0000-0002-0335-4272</orcidid><orcidid>https://orcid.org/0000-0002-3177-5023</orcidid></search><sort><creationdate>202303</creationdate><title>Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?</title><author>Isaacs, Mark ; Garcia‐Navarro, Julio ; Ong, Wee‐Jun ; Jiménez‐Calvo, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Alternative energy sources</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Emissions</topic><topic>Energy security</topic><topic>Energy sources</topic><topic>Fossil fuels</topic><topic>Fuel cells</topic><topic>Gases</topic><topic>Green hydrogen</topic><topic>Hydrogen</topic><topic>Laboratories</topic><topic>Natural gas</topic><topic>Net zero</topic><topic>net zero emissions</topic><topic>Observatories</topic><topic>Paris Agreement</topic><topic>Photocatalysis</topic><topic>Photosynthesis</topic><topic>Renewable energy</topic><topic>roadmap</topic><topic>Solar energy</topic><topic>technological development</topic><topic>Technology assessment</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isaacs, Mark</creatorcontrib><creatorcontrib>Garcia‐Navarro, Julio</creatorcontrib><creatorcontrib>Ong, Wee‐Jun</creatorcontrib><creatorcontrib>Jiménez‐Calvo, Pablo</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley Online Library website</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Global challenges</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isaacs, Mark</au><au>Garcia‐Navarro, Julio</au><au>Ong, Wee‐Jun</au><au>Jiménez‐Calvo, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?</atitle><jtitle>Global challenges</jtitle><addtitle>Glob Chall</addtitle><date>2023-03</date><risdate>2023</risdate><volume>7</volume><issue>3</issue><spage>2200165</spage><epage>n/a</epage><pages>2200165-n/a</pages><issn>2056-6646</issn><eissn>2056-6646</eissn><abstract>Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting's beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar‐driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large‐scale examples. In order for solar‐assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market.
The 2050 roadmap strategies and net zero emission goals are made possible through the adoption of novel greener and more sustainable processes. In this regard, exploiting solar irradiation (a plentiful energy source) is advantageous for developing green hydrogen technologies. Photocatalytic devices are suited for large‐scale plants proliferation. Three case studies from France, Spain, and Japan are presented.</abstract><cop>Germany</cop><pub>John Wiley & Sons, Inc</pub><pmid>36910466</pmid><doi>10.1002/gch2.202200165</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5124-1934</orcidid><orcidid>https://orcid.org/0000-0002-9826-6995</orcidid><orcidid>https://orcid.org/0000-0002-0335-4272</orcidid><orcidid>https://orcid.org/0000-0002-3177-5023</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-6646 |
ispartof | Global challenges, 2023-03, Vol.7 (3), p.2200165-n/a |
issn | 2056-6646 2056-6646 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2c5da2ef8f75408da3ca7dfa608ad07a |
source | Publicly Available Content Database; Wiley_OA刊; PubMed Central |
subjects | Adsorption Alternative energy sources Carbon dioxide Catalysts Emissions Energy security Energy sources Fossil fuels Fuel cells Gases Green hydrogen Hydrogen Laboratories Natural gas Net zero net zero emissions Observatories Paris Agreement Photocatalysis Photosynthesis Renewable energy roadmap Solar energy technological development Technology assessment Water splitting |
title | Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20Photocatalysis%20the%20Next%20Technology%20to%20Produce%20Green%20Hydrogen%20to%20Enable%20the%20Net%20Zero%20Emissions%20Goal?&rft.jtitle=Global%20challenges&rft.au=Isaacs,%20Mark&rft.date=2023-03&rft.volume=7&rft.issue=3&rft.spage=2200165&rft.epage=n/a&rft.pages=2200165-n/a&rft.issn=2056-6646&rft.eissn=2056-6646&rft_id=info:doi/10.1002/gch2.202200165&rft_dat=%3Cproquest_doaj_%3E2786513061%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785173271&rft_id=info:pmid/36910466&rfr_iscdi=true |