Loading…

Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?

Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar en...

Full description

Saved in:
Bibliographic Details
Published in:Global challenges 2023-03, Vol.7 (3), p.2200165-n/a
Main Authors: Isaacs, Mark, Garcia‐Navarro, Julio, Ong, Wee‐Jun, Jiménez‐Calvo, Pablo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73
cites cdi_FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73
container_end_page n/a
container_issue 3
container_start_page 2200165
container_title Global challenges
container_volume 7
creator Isaacs, Mark
Garcia‐Navarro, Julio
Ong, Wee‐Jun
Jiménez‐Calvo, Pablo
description Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting's beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen  are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar‐driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large‐scale examples. In order for solar‐assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market. The 2050 roadmap strategies and net zero emission goals are made possible through the adoption of novel greener and more sustainable processes. In this regard, exploiting solar irradiation (a plentiful energy source) is advantageous for developing green hydrogen technologies. Photocatalytic devices are suited for large‐scale plants proliferation. Three case studies from France, Spain, and Japan are presented.
doi_str_mv 10.1002/gch2.202200165
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2c5da2ef8f75408da3ca7dfa608ad07a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2c5da2ef8f75408da3ca7dfa608ad07a</doaj_id><sourcerecordid>2786513061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhlcIRKvQK0dkiQuXBNvrj91ThaKSRKqgh3LhYjn2eHcjZ13sXSD_Hi8JoeXCyaOZZ16PX09RvCZ4QTCm7xvT0gXFlGJMBH9WXFLMxVwIJp4_ii-Kq5R2ODdQgsuqellclKImmAlxWbhNQndtGILRg_aH1CU0tIA-wc8B3YNp--BDc0BDQHcx2NEAWkWAHq0PNoYmB7ly0-uth1PfgL5CzLl9l1IX-oRWQfvrV8ULp32Cq9M5K758vLlfrue3n1eb5YfbueGS8TmtCCFWswp4SVjNnGPYArPcWaCSkdpQWgnKHTcW87out5yVW-nElHFWlrNic9S1Qe_UQ-z2Oh5U0J36nQixUToOnfGgqOFWU3CVk5zhyurSaGmdFrjSFkudta6PWg_jdg_WQD9E7Z-IPq30Xaua8F3lv8lm58lmxbuTQgzfRkiDyq4Y8F73EMakqKwEJyUWJKNv_0F3YYx99mqiOJEllRO1OFImhpQiuPM0BE_XUjWthDqvRG548_gNZ_zPAmSgPgI_Og-H_8ip1XJN_4r_AoBUwYw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785173271</pqid></control><display><type>article</type><title>Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?</title><source>Publicly Available Content Database</source><source>Wiley_OA刊</source><source>PubMed Central</source><creator>Isaacs, Mark ; Garcia‐Navarro, Julio ; Ong, Wee‐Jun ; Jiménez‐Calvo, Pablo</creator><creatorcontrib>Isaacs, Mark ; Garcia‐Navarro, Julio ; Ong, Wee‐Jun ; Jiménez‐Calvo, Pablo</creatorcontrib><description>Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting's beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen  are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar‐driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large‐scale examples. In order for solar‐assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market. The 2050 roadmap strategies and net zero emission goals are made possible through the adoption of novel greener and more sustainable processes. In this regard, exploiting solar irradiation (a plentiful energy source) is advantageous for developing green hydrogen technologies. Photocatalytic devices are suited for large‐scale plants proliferation. Three case studies from France, Spain, and Japan are presented.</description><identifier>ISSN: 2056-6646</identifier><identifier>EISSN: 2056-6646</identifier><identifier>DOI: 10.1002/gch2.202200165</identifier><identifier>PMID: 36910466</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>Adsorption ; Alternative energy sources ; Carbon dioxide ; Catalysts ; Emissions ; Energy security ; Energy sources ; Fossil fuels ; Fuel cells ; Gases ; Green hydrogen ; Hydrogen ; Laboratories ; Natural gas ; Net zero ; net zero emissions ; Observatories ; Paris Agreement ; Photocatalysis ; Photosynthesis ; Renewable energy ; roadmap ; Solar energy ; technological development ; Technology assessment ; Water splitting</subject><ispartof>Global challenges, 2023-03, Vol.7 (3), p.2200165-n/a</ispartof><rights>2022 The Authors. published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Global Challenges published by Wiley‐VCH GmbH.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73</citedby><cites>FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73</cites><orcidid>0000-0002-5124-1934 ; 0000-0002-9826-6995 ; 0000-0002-0335-4272 ; 0000-0002-3177-5023</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2785173271/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2785173271?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11562,25753,27924,27925,37012,37013,44590,46052,46476,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36910466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Isaacs, Mark</creatorcontrib><creatorcontrib>Garcia‐Navarro, Julio</creatorcontrib><creatorcontrib>Ong, Wee‐Jun</creatorcontrib><creatorcontrib>Jiménez‐Calvo, Pablo</creatorcontrib><title>Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?</title><title>Global challenges</title><addtitle>Glob Chall</addtitle><description>Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting's beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen  are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar‐driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large‐scale examples. In order for solar‐assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market. The 2050 roadmap strategies and net zero emission goals are made possible through the adoption of novel greener and more sustainable processes. In this regard, exploiting solar irradiation (a plentiful energy source) is advantageous for developing green hydrogen technologies. Photocatalytic devices are suited for large‐scale plants proliferation. Three case studies from France, Spain, and Japan are presented.</description><subject>Adsorption</subject><subject>Alternative energy sources</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Emissions</subject><subject>Energy security</subject><subject>Energy sources</subject><subject>Fossil fuels</subject><subject>Fuel cells</subject><subject>Gases</subject><subject>Green hydrogen</subject><subject>Hydrogen</subject><subject>Laboratories</subject><subject>Natural gas</subject><subject>Net zero</subject><subject>net zero emissions</subject><subject>Observatories</subject><subject>Paris Agreement</subject><subject>Photocatalysis</subject><subject>Photosynthesis</subject><subject>Renewable energy</subject><subject>roadmap</subject><subject>Solar energy</subject><subject>technological development</subject><subject>Technology assessment</subject><subject>Water splitting</subject><issn>2056-6646</issn><issn>2056-6646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1vEzEQhlcIRKvQK0dkiQuXBNvrj91ThaKSRKqgh3LhYjn2eHcjZ13sXSD_Hi8JoeXCyaOZZ16PX09RvCZ4QTCm7xvT0gXFlGJMBH9WXFLMxVwIJp4_ii-Kq5R2ODdQgsuqellclKImmAlxWbhNQndtGILRg_aH1CU0tIA-wc8B3YNp--BDc0BDQHcx2NEAWkWAHq0PNoYmB7ly0-uth1PfgL5CzLl9l1IX-oRWQfvrV8ULp32Cq9M5K758vLlfrue3n1eb5YfbueGS8TmtCCFWswp4SVjNnGPYArPcWaCSkdpQWgnKHTcW87out5yVW-nElHFWlrNic9S1Qe_UQ-z2Oh5U0J36nQixUToOnfGgqOFWU3CVk5zhyurSaGmdFrjSFkudta6PWg_jdg_WQD9E7Z-IPq30Xaua8F3lv8lm58lmxbuTQgzfRkiDyq4Y8F73EMakqKwEJyUWJKNv_0F3YYx99mqiOJEllRO1OFImhpQiuPM0BE_XUjWthDqvRG548_gNZ_zPAmSgPgI_Og-H_8ip1XJN_4r_AoBUwYw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Isaacs, Mark</creator><creator>Garcia‐Navarro, Julio</creator><creator>Ong, Wee‐Jun</creator><creator>Jiménez‐Calvo, Pablo</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5124-1934</orcidid><orcidid>https://orcid.org/0000-0002-9826-6995</orcidid><orcidid>https://orcid.org/0000-0002-0335-4272</orcidid><orcidid>https://orcid.org/0000-0002-3177-5023</orcidid></search><sort><creationdate>202303</creationdate><title>Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?</title><author>Isaacs, Mark ; Garcia‐Navarro, Julio ; Ong, Wee‐Jun ; Jiménez‐Calvo, Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Alternative energy sources</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Emissions</topic><topic>Energy security</topic><topic>Energy sources</topic><topic>Fossil fuels</topic><topic>Fuel cells</topic><topic>Gases</topic><topic>Green hydrogen</topic><topic>Hydrogen</topic><topic>Laboratories</topic><topic>Natural gas</topic><topic>Net zero</topic><topic>net zero emissions</topic><topic>Observatories</topic><topic>Paris Agreement</topic><topic>Photocatalysis</topic><topic>Photosynthesis</topic><topic>Renewable energy</topic><topic>roadmap</topic><topic>Solar energy</topic><topic>technological development</topic><topic>Technology assessment</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isaacs, Mark</creatorcontrib><creatorcontrib>Garcia‐Navarro, Julio</creatorcontrib><creatorcontrib>Ong, Wee‐Jun</creatorcontrib><creatorcontrib>Jiménez‐Calvo, Pablo</creatorcontrib><collection>Wiley_OA刊</collection><collection>Wiley Online Library website</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Global challenges</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Isaacs, Mark</au><au>Garcia‐Navarro, Julio</au><au>Ong, Wee‐Jun</au><au>Jiménez‐Calvo, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?</atitle><jtitle>Global challenges</jtitle><addtitle>Glob Chall</addtitle><date>2023-03</date><risdate>2023</risdate><volume>7</volume><issue>3</issue><spage>2200165</spage><epage>n/a</epage><pages>2200165-n/a</pages><issn>2056-6646</issn><eissn>2056-6646</eissn><abstract>Energy security concerns require novel greener and more sustainable processes, and Paris Agreement goals have put in motion several measures aligned with the 2050 roadmap strategies and net zero emission goals. Renewable energies are a promising alternative to existing infrastructures, with solar energy one of the most appealing due to its use of the overabundant natural source of energy. Photocatalysis as a simple heterogeneous surface catalytic reaction is well placed to enter the realm of scaling up processes for wide scale implementation. Inspired by natural photosynthesis, artificial water splitting's beauty lies in its simplicity, requiring only light, a catalyst, and water. The bottlenecks to producing a high volume of hydrogen  are several: Reactors with efficient photonic/mass/heat profiles, multifunctional efficient solar‐driven catalysts, and proliferation of pilot devices. Three case studies, developed in Japan, Spain, and France are showcased to emphasize efforts on a pilot and large‐scale examples. In order for solar‐assisted photocatalytic H2 to mature as a solution, the aforementioned bottlenecks must be overcome for the field to advance its technology readiness level, assess the capital expenditure, and enter the market. The 2050 roadmap strategies and net zero emission goals are made possible through the adoption of novel greener and more sustainable processes. In this regard, exploiting solar irradiation (a plentiful energy source) is advantageous for developing green hydrogen technologies. Photocatalytic devices are suited for large‐scale plants proliferation. Three case studies from France, Spain, and Japan are presented.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36910466</pmid><doi>10.1002/gch2.202200165</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5124-1934</orcidid><orcidid>https://orcid.org/0000-0002-9826-6995</orcidid><orcidid>https://orcid.org/0000-0002-0335-4272</orcidid><orcidid>https://orcid.org/0000-0002-3177-5023</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-6646
ispartof Global challenges, 2023-03, Vol.7 (3), p.2200165-n/a
issn 2056-6646
2056-6646
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2c5da2ef8f75408da3ca7dfa608ad07a
source Publicly Available Content Database; Wiley_OA刊; PubMed Central
subjects Adsorption
Alternative energy sources
Carbon dioxide
Catalysts
Emissions
Energy security
Energy sources
Fossil fuels
Fuel cells
Gases
Green hydrogen
Hydrogen
Laboratories
Natural gas
Net zero
net zero emissions
Observatories
Paris Agreement
Photocatalysis
Photosynthesis
Renewable energy
roadmap
Solar energy
technological development
Technology assessment
Water splitting
title Is Photocatalysis the Next Technology to Produce Green Hydrogen to Enable the Net Zero Emissions Goal?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20Photocatalysis%20the%20Next%20Technology%20to%20Produce%20Green%20Hydrogen%20to%20Enable%20the%20Net%20Zero%20Emissions%20Goal?&rft.jtitle=Global%20challenges&rft.au=Isaacs,%20Mark&rft.date=2023-03&rft.volume=7&rft.issue=3&rft.spage=2200165&rft.epage=n/a&rft.pages=2200165-n/a&rft.issn=2056-6646&rft.eissn=2056-6646&rft_id=info:doi/10.1002/gch2.202200165&rft_dat=%3Cproquest_doaj_%3E2786513061%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5745-28111da48e531494ff40de4d5fde27419c228625f5cd05993b543b7f65f5cfd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2785173271&rft_id=info:pmid/36910466&rfr_iscdi=true