Loading…

Hybrid suspended growth bioreactor system for the nitrification, denitrification, and ammonia removal from beverage industry wastewater: Biokinetic modelling and optimization by response surface methodology

To assess the feasibility of beverage industry wastewater (BIW) reuse, this study attempts to examine the effectiveness of a Hybrid Suspended Growth Bioreactor System (H-SGBS) for the treatment of BIW. The bioreactor comprises of an anoxic, aerobic, aerobic digester chamber, and a clarifier to settl...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in chemical and environmental engineering 2023-12, Vol.8, p.100395, Article 100395
Main Authors: Aminu, Nasiru, Kutty, Shamsul Rahman Mohamed, Isa, Mohamed Hasnain, Ismail, Abubakar, Noor, Azmatullah, Al-dhawi, Baker Nasser Saleh, Jagaba, Ahmad Hussaini
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To assess the feasibility of beverage industry wastewater (BIW) reuse, this study attempts to examine the effectiveness of a Hybrid Suspended Growth Bioreactor System (H-SGBS) for the treatment of BIW. The bioreactor comprises of an anoxic, aerobic, aerobic digester chamber, and a clarifier to settle sludge. Response surface methodology (RSM) was utilised to design the experiment and examine the impact of different operating variables. Hydraulic retention periods (HRT) of 1–3 days were adopted for H-SGBS with BIW concentrations of 20–100%. The results revealed that maximum NH4+-N removal of 94.26% was attained at 60% BIW and 2 d HRT. Therefore, further testing is not required. The ultimate effluent quality increased with the addition of an aerobic chamber to the bioreactor, meeting most environmental and economic requirements. Treating BIW using the first two chambers of H-SGBS was possible with an overall energy usage of 0.15 kWh/m3 and an operational cost of roughly 6.48 USD/m3. Consequently, using aerobic digester chamber, and a clarifier to settle sludge to remove NH4+-N from H-SGBS was a promising and cost-efficient strategy. It could also be termed as a useful and sustainable treatment process for BIW. The First order, Grau Second order, and Modified Stover-Kincannon models were utilised to assess substrate removal rates. The models that best fit the experimental data turned out to be the modified Stover-Kincannon (R2 = 0.97309) and Grau second order (R2 = 0.95838). Thus, it could be said that the H-SGBS has successfully removed contaminants while also degrading BIW in sludge. The findings of this study indicate that the recently developed H-SGBS with native mixed microorganisms can remediate contaminants released from the beverage industry. To further reduce the NH4+-N concentration, a tertiary treatment step might be necessary. •Emerging technology for beverage industry wastewater treatment.•Hybrid Suspended Growth Bioreactor System for BIW treatment.•Evaluation of the nitrification and denitrification processes during BIW treatment.•Process optimization by response surface methodology.•Biokinetic modelling for ammonia removal.
ISSN:2666-0164
2666-0164
DOI:10.1016/j.cscee.2023.100395