Loading…

Reverse pH-dependent fluorescence protein visualizes pattern of interfacial proton dynamics during hydrogen evolution reaction

Reverse pH-dependent fluorescent protein, including dKeima, is a type of fluorescent protein in which the chromophore protonation state depends inversely on external pH. The dependence is maintained even when immobilized at the metal-solution interface. But, interestingly, its responses to the hydro...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-10, Vol.13 (1), p.17489-17489, Article 17489
Main Authors: Farha, Trisha Diba, Kim, Samyoung, Imayasu, Mieko, Miyawaki, Atsushi, Tsutsui, Hidekazu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reverse pH-dependent fluorescent protein, including dKeima, is a type of fluorescent protein in which the chromophore protonation state depends inversely on external pH. The dependence is maintained even when immobilized at the metal-solution interface. But, interestingly, its responses to the hydrogen evolution reaction (HER) at the interface are not reversed: HER rises the pH of the solution around the cathode, but, highly active HER induces chromophore deprotonation regardless of the reverse pH dependence, reflecting an interface-specific deprotonation effect by HER. Here, we exploit this phenomenon to perform scanning-less, real-time visualization of interfacial proton dynamics during HER at a wide field of view. By using dKeima, the HER-driven deprotonation effect was well discriminated from the solution pH effect. In the electrodes of composite structures with a catalyst, dKeima visualized keen dependence of the proton depletion pattern on the electrode configuration. In addition, propagations of optical signals were observed, which seemingly reflect long-range proton hopping confined to the metal-solution interface. Thus, reverse pH-dependent fluorescent proteins provide a unique tool for spatiotemporal analysis of interfacial proton dynamics, which is expected to contribute to a better understanding of the HER process and ultimately to the safe and efficient production of molecular hydrogen.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-44758-4