Loading…

17.1% Efficient Single‐Junction Organic Solar Cells Enabled by n‐Type Doping of the Bulk‐Heterojunction

Molecular doping is often used in organic semiconductors to tune their (opto)electronic properties. Despite its versatility, however, its application in organic photovoltaics (OPVs) remains limited and restricted to p‐type dopants. In an effort to control the charge transport within the bulk‐heteroj...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2020-04, Vol.7 (7), p.1903419-n/a
Main Authors: Lin, Yuanbao, Firdaus, Yuliar, Nugraha, Mohamad Insan, Liu, Feng, Karuthedath, Safakath, Emwas, Abdul‐Hamid, Zhang, Weimin, Seitkhan, Akmaral, Neophytou, Marios, Faber, Hendrik, Yengel, Emre, McCulloch, Iain, Tsetseris, Leonidas, Laquai, Frédéric, Anthopoulos, Thomas D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5955-fec4807c691636e4ef43c39428d28d5e59ef2ee8fd88cb575310d2a43175430b3
cites cdi_FETCH-LOGICAL-c5955-fec4807c691636e4ef43c39428d28d5e59ef2ee8fd88cb575310d2a43175430b3
container_end_page n/a
container_issue 7
container_start_page 1903419
container_title Advanced science
container_volume 7
creator Lin, Yuanbao
Firdaus, Yuliar
Nugraha, Mohamad Insan
Liu, Feng
Karuthedath, Safakath
Emwas, Abdul‐Hamid
Zhang, Weimin
Seitkhan, Akmaral
Neophytou, Marios
Faber, Hendrik
Yengel, Emre
McCulloch, Iain
Tsetseris, Leonidas
Laquai, Frédéric
Anthopoulos, Thomas D.
description Molecular doping is often used in organic semiconductors to tune their (opto)electronic properties. Despite its versatility, however, its application in organic photovoltaics (OPVs) remains limited and restricted to p‐type dopants. In an effort to control the charge transport within the bulk‐heterojunction (BHJ) of OPVs, the n‐type dopant benzyl viologen (BV) is incorporated in a BHJ composed of the donor polymer PM6 and the small‐molecule acceptor IT‐4F. The power conversion efficiency (PCE) of the cells is found to increase from 13.2% to 14.4% upon addition of 0.004 wt% BV. Analysis of the photoactive materials and devices reveals that BV acts simultaneously as n‐type dopant and microstructure modifier for the BHJ. Under optimal BV concentrations, these synergistic effects result in balanced hole and electron mobilities, higher absorption coefficients and increased charge‐carrier density within the BHJ, while significantly extending the cells' shelf‐lifetime. The n‐type doping strategy is applied to five additional BHJ systems, for which similarly remarkable performance improvements are obtained. OPVs of particular interest are based on the ternary PM6:Y6:PC71BM:BV(0.004 wt%) blend for which a maximum PCE of 17.1%, is obtained. The effectiveness of the n‐doping strategy highlights electron transport in NFA‐based OPVs as being a key issue. Addition of the n‐type dopant benzyl viologen (BV) into several best‐in‐class organic bulk‐heterojunctions (BHJ) is shown to consistently improve the power conversion efficiency (PCE) of the resulting solar cells. The presence of BV inside the BHJs increases the absorption coefficient, balances charge transport, and enhances the charge‐carrier density. These synergistic effects result in organic photovoltaics with a maximum PCE of 17.1%.
doi_str_mv 10.1002/advs.201903419
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2caaa4bc8d0b496c8303158d8d61fdaa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2caaa4bc8d0b496c8303158d8d61fdaa</doaj_id><sourcerecordid>2388827627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5955-fec4807c691636e4ef43c39428d28d5e59ef2ee8fd88cb575310d2a43175430b3</originalsourceid><addsrcrecordid>eNqFks1uEzEQgFcIRKvSK0dkCSFxSfDvrveCVNJAiyr1kMLV8trj1MGxU-9uUW48As_Ik-CSErVckCzZ8nzzyZ6ZqnpJ8JRgTN9pe9tPKSYtZpy0T6pDSlo5YZLzpw_OB9Vx368wxkSwhhP5vDpglDacUXxYrUkzJW_Q3DlvPMQBLXxcBvj14-fnMZrBp4gu81JHb9AiBZ3RDELo0TzqLoBF3RbFwl5tN4BO06bkouTQcA3owxi-lcgZDJDT6t71onrmdOjh-H4_qr58nF_NziYXl5_OZycXEyNaISYODJe4MXVLalYDB8eZYS2n0pYlQLTgKIB0VkrTiUYwgi3VnJFGcIY7dlSd77w26ZXaZL_WeauS9urPRcpLpfPgTQBFjdaad0Za3PG2NpJhRoS00tbEWa2L6_3OtRm7NVhTipR1eCR9HIn-Wi3TrWoIJ8VVBG_vBTndjNAPau17U8qoI6SxV5RJKWlT06agr_9BV2nMsZSqUG1pdN1SXKjpjjI59X0Gt38MwepuMNTdYKj9YJSEVw-_sMf_jkEB-A747gNs_6NTJ6dfF6Q0iv0G1GnGCQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390196920</pqid></control><display><type>article</type><title>17.1% Efficient Single‐Junction Organic Solar Cells Enabled by n‐Type Doping of the Bulk‐Heterojunction</title><source>Wiley Online Library</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Lin, Yuanbao ; Firdaus, Yuliar ; Nugraha, Mohamad Insan ; Liu, Feng ; Karuthedath, Safakath ; Emwas, Abdul‐Hamid ; Zhang, Weimin ; Seitkhan, Akmaral ; Neophytou, Marios ; Faber, Hendrik ; Yengel, Emre ; McCulloch, Iain ; Tsetseris, Leonidas ; Laquai, Frédéric ; Anthopoulos, Thomas D.</creator><creatorcontrib>Lin, Yuanbao ; Firdaus, Yuliar ; Nugraha, Mohamad Insan ; Liu, Feng ; Karuthedath, Safakath ; Emwas, Abdul‐Hamid ; Zhang, Weimin ; Seitkhan, Akmaral ; Neophytou, Marios ; Faber, Hendrik ; Yengel, Emre ; McCulloch, Iain ; Tsetseris, Leonidas ; Laquai, Frédéric ; Anthopoulos, Thomas D.</creatorcontrib><description>Molecular doping is often used in organic semiconductors to tune their (opto)electronic properties. Despite its versatility, however, its application in organic photovoltaics (OPVs) remains limited and restricted to p‐type dopants. In an effort to control the charge transport within the bulk‐heterojunction (BHJ) of OPVs, the n‐type dopant benzyl viologen (BV) is incorporated in a BHJ composed of the donor polymer PM6 and the small‐molecule acceptor IT‐4F. The power conversion efficiency (PCE) of the cells is found to increase from 13.2% to 14.4% upon addition of 0.004 wt% BV. Analysis of the photoactive materials and devices reveals that BV acts simultaneously as n‐type dopant and microstructure modifier for the BHJ. Under optimal BV concentrations, these synergistic effects result in balanced hole and electron mobilities, higher absorption coefficients and increased charge‐carrier density within the BHJ, while significantly extending the cells' shelf‐lifetime. The n‐type doping strategy is applied to five additional BHJ systems, for which similarly remarkable performance improvements are obtained. OPVs of particular interest are based on the ternary PM6:Y6:PC71BM:BV(0.004 wt%) blend for which a maximum PCE of 17.1%, is obtained. The effectiveness of the n‐doping strategy highlights electron transport in NFA‐based OPVs as being a key issue. Addition of the n‐type dopant benzyl viologen (BV) into several best‐in‐class organic bulk‐heterojunctions (BHJ) is shown to consistently improve the power conversion efficiency (PCE) of the resulting solar cells. The presence of BV inside the BHJs increases the absorption coefficient, balances charge transport, and enhances the charge‐carrier density. These synergistic effects result in organic photovoltaics with a maximum PCE of 17.1%.</description><identifier>ISSN: 2198-3844</identifier><identifier>EISSN: 2198-3844</identifier><identifier>DOI: 10.1002/advs.201903419</identifier><identifier>PMID: 32274320</identifier><language>eng</language><publisher>Germany: John Wiley &amp; Sons, Inc</publisher><subject>additives ; Communication ; Communications ; Efficiency ; molecular doping ; nonfullerene acceptors ; organic photovoltaics ; Semiconductors ; Spectrum analysis</subject><ispartof>Advanced science, 2020-04, Vol.7 (7), p.1903419-n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5955-fec4807c691636e4ef43c39428d28d5e59ef2ee8fd88cb575310d2a43175430b3</citedby><cites>FETCH-LOGICAL-c5955-fec4807c691636e4ef43c39428d28d5e59ef2ee8fd88cb575310d2a43175430b3</cites><orcidid>0000-0002-0978-8813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2390196920/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2390196920?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,11543,25734,27905,27906,36993,36994,44571,46033,46457,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32274320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Yuanbao</creatorcontrib><creatorcontrib>Firdaus, Yuliar</creatorcontrib><creatorcontrib>Nugraha, Mohamad Insan</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Karuthedath, Safakath</creatorcontrib><creatorcontrib>Emwas, Abdul‐Hamid</creatorcontrib><creatorcontrib>Zhang, Weimin</creatorcontrib><creatorcontrib>Seitkhan, Akmaral</creatorcontrib><creatorcontrib>Neophytou, Marios</creatorcontrib><creatorcontrib>Faber, Hendrik</creatorcontrib><creatorcontrib>Yengel, Emre</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Tsetseris, Leonidas</creatorcontrib><creatorcontrib>Laquai, Frédéric</creatorcontrib><creatorcontrib>Anthopoulos, Thomas D.</creatorcontrib><title>17.1% Efficient Single‐Junction Organic Solar Cells Enabled by n‐Type Doping of the Bulk‐Heterojunction</title><title>Advanced science</title><addtitle>Adv Sci (Weinh)</addtitle><description>Molecular doping is often used in organic semiconductors to tune their (opto)electronic properties. Despite its versatility, however, its application in organic photovoltaics (OPVs) remains limited and restricted to p‐type dopants. In an effort to control the charge transport within the bulk‐heterojunction (BHJ) of OPVs, the n‐type dopant benzyl viologen (BV) is incorporated in a BHJ composed of the donor polymer PM6 and the small‐molecule acceptor IT‐4F. The power conversion efficiency (PCE) of the cells is found to increase from 13.2% to 14.4% upon addition of 0.004 wt% BV. Analysis of the photoactive materials and devices reveals that BV acts simultaneously as n‐type dopant and microstructure modifier for the BHJ. Under optimal BV concentrations, these synergistic effects result in balanced hole and electron mobilities, higher absorption coefficients and increased charge‐carrier density within the BHJ, while significantly extending the cells' shelf‐lifetime. The n‐type doping strategy is applied to five additional BHJ systems, for which similarly remarkable performance improvements are obtained. OPVs of particular interest are based on the ternary PM6:Y6:PC71BM:BV(0.004 wt%) blend for which a maximum PCE of 17.1%, is obtained. The effectiveness of the n‐doping strategy highlights electron transport in NFA‐based OPVs as being a key issue. Addition of the n‐type dopant benzyl viologen (BV) into several best‐in‐class organic bulk‐heterojunctions (BHJ) is shown to consistently improve the power conversion efficiency (PCE) of the resulting solar cells. The presence of BV inside the BHJs increases the absorption coefficient, balances charge transport, and enhances the charge‐carrier density. These synergistic effects result in organic photovoltaics with a maximum PCE of 17.1%.</description><subject>additives</subject><subject>Communication</subject><subject>Communications</subject><subject>Efficiency</subject><subject>molecular doping</subject><subject>nonfullerene acceptors</subject><subject>organic photovoltaics</subject><subject>Semiconductors</subject><subject>Spectrum analysis</subject><issn>2198-3844</issn><issn>2198-3844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFks1uEzEQgFcIRKvSK0dkCSFxSfDvrveCVNJAiyr1kMLV8trj1MGxU-9uUW48As_Ik-CSErVckCzZ8nzzyZ6ZqnpJ8JRgTN9pe9tPKSYtZpy0T6pDSlo5YZLzpw_OB9Vx368wxkSwhhP5vDpglDacUXxYrUkzJW_Q3DlvPMQBLXxcBvj14-fnMZrBp4gu81JHb9AiBZ3RDELo0TzqLoBF3RbFwl5tN4BO06bkouTQcA3owxi-lcgZDJDT6t71onrmdOjh-H4_qr58nF_NziYXl5_OZycXEyNaISYODJe4MXVLalYDB8eZYS2n0pYlQLTgKIB0VkrTiUYwgi3VnJFGcIY7dlSd77w26ZXaZL_WeauS9urPRcpLpfPgTQBFjdaad0Za3PG2NpJhRoS00tbEWa2L6_3OtRm7NVhTipR1eCR9HIn-Wi3TrWoIJ8VVBG_vBTndjNAPau17U8qoI6SxV5RJKWlT06agr_9BV2nMsZSqUG1pdN1SXKjpjjI59X0Gt38MwepuMNTdYKj9YJSEVw-_sMf_jkEB-A747gNs_6NTJ6dfF6Q0iv0G1GnGCQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Lin, Yuanbao</creator><creator>Firdaus, Yuliar</creator><creator>Nugraha, Mohamad Insan</creator><creator>Liu, Feng</creator><creator>Karuthedath, Safakath</creator><creator>Emwas, Abdul‐Hamid</creator><creator>Zhang, Weimin</creator><creator>Seitkhan, Akmaral</creator><creator>Neophytou, Marios</creator><creator>Faber, Hendrik</creator><creator>Yengel, Emre</creator><creator>McCulloch, Iain</creator><creator>Tsetseris, Leonidas</creator><creator>Laquai, Frédéric</creator><creator>Anthopoulos, Thomas D.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0978-8813</orcidid></search><sort><creationdate>20200401</creationdate><title>17.1% Efficient Single‐Junction Organic Solar Cells Enabled by n‐Type Doping of the Bulk‐Heterojunction</title><author>Lin, Yuanbao ; Firdaus, Yuliar ; Nugraha, Mohamad Insan ; Liu, Feng ; Karuthedath, Safakath ; Emwas, Abdul‐Hamid ; Zhang, Weimin ; Seitkhan, Akmaral ; Neophytou, Marios ; Faber, Hendrik ; Yengel, Emre ; McCulloch, Iain ; Tsetseris, Leonidas ; Laquai, Frédéric ; Anthopoulos, Thomas D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5955-fec4807c691636e4ef43c39428d28d5e59ef2ee8fd88cb575310d2a43175430b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>additives</topic><topic>Communication</topic><topic>Communications</topic><topic>Efficiency</topic><topic>molecular doping</topic><topic>nonfullerene acceptors</topic><topic>organic photovoltaics</topic><topic>Semiconductors</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yuanbao</creatorcontrib><creatorcontrib>Firdaus, Yuliar</creatorcontrib><creatorcontrib>Nugraha, Mohamad Insan</creatorcontrib><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Karuthedath, Safakath</creatorcontrib><creatorcontrib>Emwas, Abdul‐Hamid</creatorcontrib><creatorcontrib>Zhang, Weimin</creatorcontrib><creatorcontrib>Seitkhan, Akmaral</creatorcontrib><creatorcontrib>Neophytou, Marios</creatorcontrib><creatorcontrib>Faber, Hendrik</creatorcontrib><creatorcontrib>Yengel, Emre</creatorcontrib><creatorcontrib>McCulloch, Iain</creatorcontrib><creatorcontrib>Tsetseris, Leonidas</creatorcontrib><creatorcontrib>Laquai, Frédéric</creatorcontrib><creatorcontrib>Anthopoulos, Thomas D.</creatorcontrib><collection>Wiley Online Library</collection><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Advanced science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yuanbao</au><au>Firdaus, Yuliar</au><au>Nugraha, Mohamad Insan</au><au>Liu, Feng</au><au>Karuthedath, Safakath</au><au>Emwas, Abdul‐Hamid</au><au>Zhang, Weimin</au><au>Seitkhan, Akmaral</au><au>Neophytou, Marios</au><au>Faber, Hendrik</au><au>Yengel, Emre</au><au>McCulloch, Iain</au><au>Tsetseris, Leonidas</au><au>Laquai, Frédéric</au><au>Anthopoulos, Thomas D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>17.1% Efficient Single‐Junction Organic Solar Cells Enabled by n‐Type Doping of the Bulk‐Heterojunction</atitle><jtitle>Advanced science</jtitle><addtitle>Adv Sci (Weinh)</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>7</volume><issue>7</issue><spage>1903419</spage><epage>n/a</epage><pages>1903419-n/a</pages><issn>2198-3844</issn><eissn>2198-3844</eissn><abstract>Molecular doping is often used in organic semiconductors to tune their (opto)electronic properties. Despite its versatility, however, its application in organic photovoltaics (OPVs) remains limited and restricted to p‐type dopants. In an effort to control the charge transport within the bulk‐heterojunction (BHJ) of OPVs, the n‐type dopant benzyl viologen (BV) is incorporated in a BHJ composed of the donor polymer PM6 and the small‐molecule acceptor IT‐4F. The power conversion efficiency (PCE) of the cells is found to increase from 13.2% to 14.4% upon addition of 0.004 wt% BV. Analysis of the photoactive materials and devices reveals that BV acts simultaneously as n‐type dopant and microstructure modifier for the BHJ. Under optimal BV concentrations, these synergistic effects result in balanced hole and electron mobilities, higher absorption coefficients and increased charge‐carrier density within the BHJ, while significantly extending the cells' shelf‐lifetime. The n‐type doping strategy is applied to five additional BHJ systems, for which similarly remarkable performance improvements are obtained. OPVs of particular interest are based on the ternary PM6:Y6:PC71BM:BV(0.004 wt%) blend for which a maximum PCE of 17.1%, is obtained. The effectiveness of the n‐doping strategy highlights electron transport in NFA‐based OPVs as being a key issue. Addition of the n‐type dopant benzyl viologen (BV) into several best‐in‐class organic bulk‐heterojunctions (BHJ) is shown to consistently improve the power conversion efficiency (PCE) of the resulting solar cells. The presence of BV inside the BHJs increases the absorption coefficient, balances charge transport, and enhances the charge‐carrier density. These synergistic effects result in organic photovoltaics with a maximum PCE of 17.1%.</abstract><cop>Germany</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32274320</pmid><doi>10.1002/advs.201903419</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0978-8813</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2198-3844
ispartof Advanced science, 2020-04, Vol.7 (7), p.1903419-n/a
issn 2198-3844
2198-3844
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2caaa4bc8d0b496c8303158d8d61fdaa
source Wiley Online Library; Publicly Available Content Database; PubMed Central
subjects additives
Communication
Communications
Efficiency
molecular doping
nonfullerene acceptors
organic photovoltaics
Semiconductors
Spectrum analysis
title 17.1% Efficient Single‐Junction Organic Solar Cells Enabled by n‐Type Doping of the Bulk‐Heterojunction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A45%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=17.1%25%20Efficient%20Single%E2%80%90Junction%20Organic%20Solar%20Cells%20Enabled%20by%20n%E2%80%90Type%20Doping%20of%20the%20Bulk%E2%80%90Heterojunction&rft.jtitle=Advanced%20science&rft.au=Lin,%20Yuanbao&rft.date=2020-04-01&rft.volume=7&rft.issue=7&rft.spage=1903419&rft.epage=n/a&rft.pages=1903419-n/a&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002/advs.201903419&rft_dat=%3Cproquest_doaj_%3E2388827627%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5955-fec4807c691636e4ef43c39428d28d5e59ef2ee8fd88cb575310d2a43175430b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390196920&rft_id=info:pmid/32274320&rfr_iscdi=true