Loading…

Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm

DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical signals and sensors 2015-07, Vol.5 (3), p.182-191
Main Authors: Saberkari, Hamidreza, Bahrami, Sheyda, Shamsi, Mousa, Amoshahy, Mohammad Javad, Ghavifekr, Habib Badri, Sedaaghi, Mohammad Hossein
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53
cites cdi_FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53
container_end_page 191
container_issue 3
container_start_page 182
container_title Journal of medical signals and sensors
container_volume 5
creator Saberkari, Hamidreza
Bahrami, Sheyda
Shamsi, Mousa
Amoshahy, Mohammad Javad
Ghavifekr, Habib Badri
Sedaaghi, Mohammad Hossein
description DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.
doi_str_mv 10.4103/2228-7477.161494
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2cc49e1962a54175a22f2d4e21862b0d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2cc49e1962a54175a22f2d4e21862b0d</doaj_id><sourcerecordid>1705475874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53</originalsourceid><addsrcrecordid>eNpVkctv1DAQhy0EolXpnRPykUuKn7FzQVotXahUygE4IstxJqkrJ17spNL2r8fbLavWl7Hm8c3jh9B7Si4EJfwTY0xXSih1QWsqGvEKnR5dr5_9T9B5znekvFoSSpq36ITVTAuq5Cn6s1lC2OHVMsfRztDhdRy3AUaYZpt2-MvNCn_3LkWbkt3hnzA8RmYfJ7xkPw3Y4pt4DwFvloeHXdXaXBirMMTk59vxHXrT25Dh_Mmeod-by1_rb9X1j69X69V15bhSouI1aQQAA9VY1TOqdQ3QUN1S14ITzglhQVogjlPOGkpZ73TXcqLb1na95Gfo6sDtor0z2-THMryJ1ptHR0yDsWn2LoBhhdYAbWpm5f4ElrGedQJK15q1pCuszwfWdmlH6FzZN9nwAvoyMvlbM8R7IyTTXKoC-PgESPHvAnk2o88OQrATxCUbqogUSmolSio5pJYL55ygP7ahxOxFNnsVzV5FcxC5lHx4Pt6x4L-k_B8I-aLY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705475874</pqid></control><display><type>article</type><title>Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm</title><source>PubMed Central</source><creator>Saberkari, Hamidreza ; Bahrami, Sheyda ; Shamsi, Mousa ; Amoshahy, Mohammad Javad ; Ghavifekr, Habib Badri ; Sedaaghi, Mohammad Hossein</creator><creatorcontrib>Saberkari, Hamidreza ; Bahrami, Sheyda ; Shamsi, Mousa ; Amoshahy, Mohammad Javad ; Ghavifekr, Habib Badri ; Sedaaghi, Mohammad Hossein</creatorcontrib><description>DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.</description><identifier>ISSN: 2228-7477</identifier><identifier>EISSN: 2228-7477</identifier><identifier>DOI: 10.4103/2228-7477.161494</identifier><identifier>PMID: 26284175</identifier><language>eng</language><publisher>India: Medknow Publications &amp; Media Pvt Ltd</publisher><subject>Breast cancer ; fuzzy clustering ; gene expression ; microarray ; noise ; Original</subject><ispartof>Journal of medical signals and sensors, 2015-07, Vol.5 (3), p.182-191</ispartof><rights>Copyright: © Journal of Medical Signals and Sensors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53</citedby><cites>FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528357/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528357/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26284175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saberkari, Hamidreza</creatorcontrib><creatorcontrib>Bahrami, Sheyda</creatorcontrib><creatorcontrib>Shamsi, Mousa</creatorcontrib><creatorcontrib>Amoshahy, Mohammad Javad</creatorcontrib><creatorcontrib>Ghavifekr, Habib Badri</creatorcontrib><creatorcontrib>Sedaaghi, Mohammad Hossein</creatorcontrib><title>Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm</title><title>Journal of medical signals and sensors</title><addtitle>J Med Signals Sens</addtitle><description>DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.</description><subject>Breast cancer</subject><subject>fuzzy clustering</subject><subject>gene expression</subject><subject>microarray</subject><subject>noise</subject><subject>Original</subject><issn>2228-7477</issn><issn>2228-7477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkctv1DAQhy0EolXpnRPykUuKn7FzQVotXahUygE4IstxJqkrJ17spNL2r8fbLavWl7Hm8c3jh9B7Si4EJfwTY0xXSih1QWsqGvEKnR5dr5_9T9B5znekvFoSSpq36ITVTAuq5Cn6s1lC2OHVMsfRztDhdRy3AUaYZpt2-MvNCn_3LkWbkt3hnzA8RmYfJ7xkPw3Y4pt4DwFvloeHXdXaXBirMMTk59vxHXrT25Dh_Mmeod-by1_rb9X1j69X69V15bhSouI1aQQAA9VY1TOqdQ3QUN1S14ITzglhQVogjlPOGkpZ73TXcqLb1na95Gfo6sDtor0z2-THMryJ1ptHR0yDsWn2LoBhhdYAbWpm5f4ElrGedQJK15q1pCuszwfWdmlH6FzZN9nwAvoyMvlbM8R7IyTTXKoC-PgESPHvAnk2o88OQrATxCUbqogUSmolSio5pJYL55ygP7ahxOxFNnsVzV5FcxC5lHx4Pt6x4L-k_B8I-aLY</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Saberkari, Hamidreza</creator><creator>Bahrami, Sheyda</creator><creator>Shamsi, Mousa</creator><creator>Amoshahy, Mohammad Javad</creator><creator>Ghavifekr, Habib Badri</creator><creator>Sedaaghi, Mohammad Hossein</creator><general>Medknow Publications &amp; Media Pvt Ltd</general><general>Wolters Kluwer Medknow Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150701</creationdate><title>Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm</title><author>Saberkari, Hamidreza ; Bahrami, Sheyda ; Shamsi, Mousa ; Amoshahy, Mohammad Javad ; Ghavifekr, Habib Badri ; Sedaaghi, Mohammad Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Breast cancer</topic><topic>fuzzy clustering</topic><topic>gene expression</topic><topic>microarray</topic><topic>noise</topic><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saberkari, Hamidreza</creatorcontrib><creatorcontrib>Bahrami, Sheyda</creatorcontrib><creatorcontrib>Shamsi, Mousa</creatorcontrib><creatorcontrib>Amoshahy, Mohammad Javad</creatorcontrib><creatorcontrib>Ghavifekr, Habib Badri</creatorcontrib><creatorcontrib>Sedaaghi, Mohammad Hossein</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of medical signals and sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saberkari, Hamidreza</au><au>Bahrami, Sheyda</au><au>Shamsi, Mousa</au><au>Amoshahy, Mohammad Javad</au><au>Ghavifekr, Habib Badri</au><au>Sedaaghi, Mohammad Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm</atitle><jtitle>Journal of medical signals and sensors</jtitle><addtitle>J Med Signals Sens</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>5</volume><issue>3</issue><spage>182</spage><epage>191</epage><pages>182-191</pages><issn>2228-7477</issn><eissn>2228-7477</eissn><abstract>DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.</abstract><cop>India</cop><pub>Medknow Publications &amp; Media Pvt Ltd</pub><pmid>26284175</pmid><doi>10.4103/2228-7477.161494</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2228-7477
ispartof Journal of medical signals and sensors, 2015-07, Vol.5 (3), p.182-191
issn 2228-7477
2228-7477
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2cc49e1962a54175a22f2d4e21862b0d
source PubMed Central
subjects Breast cancer
fuzzy clustering
gene expression
microarray
noise
Original
title Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Complementary%20DNA%20Microarray%20Segmentation%20using%20a%20Novel%20Fuzzy-based%20Algorithm&rft.jtitle=Journal%20of%20medical%20signals%20and%20sensors&rft.au=Saberkari,%20Hamidreza&rft.date=2015-07-01&rft.volume=5&rft.issue=3&rft.spage=182&rft.epage=191&rft.pages=182-191&rft.issn=2228-7477&rft.eissn=2228-7477&rft_id=info:doi/10.4103/2228-7477.161494&rft_dat=%3Cproquest_doaj_%3E1705475874%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1705475874&rft_id=info:pmid/26284175&rfr_iscdi=true