Loading…
Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm
DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression o...
Saved in:
Published in: | Journal of medical signals and sensors 2015-07, Vol.5 (3), p.182-191 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53 |
---|---|
cites | cdi_FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53 |
container_end_page | 191 |
container_issue | 3 |
container_start_page | 182 |
container_title | Journal of medical signals and sensors |
container_volume | 5 |
creator | Saberkari, Hamidreza Bahrami, Sheyda Shamsi, Mousa Amoshahy, Mohammad Javad Ghavifekr, Habib Badri Sedaaghi, Mohammad Hossein |
description | DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively. |
doi_str_mv | 10.4103/2228-7477.161494 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2cc49e1962a54175a22f2d4e21862b0d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2cc49e1962a54175a22f2d4e21862b0d</doaj_id><sourcerecordid>1705475874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53</originalsourceid><addsrcrecordid>eNpVkctv1DAQhy0EolXpnRPykUuKn7FzQVotXahUygE4IstxJqkrJ17spNL2r8fbLavWl7Hm8c3jh9B7Si4EJfwTY0xXSih1QWsqGvEKnR5dr5_9T9B5znekvFoSSpq36ITVTAuq5Cn6s1lC2OHVMsfRztDhdRy3AUaYZpt2-MvNCn_3LkWbkt3hnzA8RmYfJ7xkPw3Y4pt4DwFvloeHXdXaXBirMMTk59vxHXrT25Dh_Mmeod-by1_rb9X1j69X69V15bhSouI1aQQAA9VY1TOqdQ3QUN1S14ITzglhQVogjlPOGkpZ73TXcqLb1na95Gfo6sDtor0z2-THMryJ1ptHR0yDsWn2LoBhhdYAbWpm5f4ElrGedQJK15q1pCuszwfWdmlH6FzZN9nwAvoyMvlbM8R7IyTTXKoC-PgESPHvAnk2o88OQrATxCUbqogUSmolSio5pJYL55ygP7ahxOxFNnsVzV5FcxC5lHx4Pt6x4L-k_B8I-aLY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705475874</pqid></control><display><type>article</type><title>Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm</title><source>PubMed Central</source><creator>Saberkari, Hamidreza ; Bahrami, Sheyda ; Shamsi, Mousa ; Amoshahy, Mohammad Javad ; Ghavifekr, Habib Badri ; Sedaaghi, Mohammad Hossein</creator><creatorcontrib>Saberkari, Hamidreza ; Bahrami, Sheyda ; Shamsi, Mousa ; Amoshahy, Mohammad Javad ; Ghavifekr, Habib Badri ; Sedaaghi, Mohammad Hossein</creatorcontrib><description>DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.</description><identifier>ISSN: 2228-7477</identifier><identifier>EISSN: 2228-7477</identifier><identifier>DOI: 10.4103/2228-7477.161494</identifier><identifier>PMID: 26284175</identifier><language>eng</language><publisher>India: Medknow Publications & Media Pvt Ltd</publisher><subject>Breast cancer ; fuzzy clustering ; gene expression ; microarray ; noise ; Original</subject><ispartof>Journal of medical signals and sensors, 2015-07, Vol.5 (3), p.182-191</ispartof><rights>Copyright: © Journal of Medical Signals and Sensors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53</citedby><cites>FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528357/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528357/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26284175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saberkari, Hamidreza</creatorcontrib><creatorcontrib>Bahrami, Sheyda</creatorcontrib><creatorcontrib>Shamsi, Mousa</creatorcontrib><creatorcontrib>Amoshahy, Mohammad Javad</creatorcontrib><creatorcontrib>Ghavifekr, Habib Badri</creatorcontrib><creatorcontrib>Sedaaghi, Mohammad Hossein</creatorcontrib><title>Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm</title><title>Journal of medical signals and sensors</title><addtitle>J Med Signals Sens</addtitle><description>DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.</description><subject>Breast cancer</subject><subject>fuzzy clustering</subject><subject>gene expression</subject><subject>microarray</subject><subject>noise</subject><subject>Original</subject><issn>2228-7477</issn><issn>2228-7477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkctv1DAQhy0EolXpnRPykUuKn7FzQVotXahUygE4IstxJqkrJ17spNL2r8fbLavWl7Hm8c3jh9B7Si4EJfwTY0xXSih1QWsqGvEKnR5dr5_9T9B5znekvFoSSpq36ITVTAuq5Cn6s1lC2OHVMsfRztDhdRy3AUaYZpt2-MvNCn_3LkWbkt3hnzA8RmYfJ7xkPw3Y4pt4DwFvloeHXdXaXBirMMTk59vxHXrT25Dh_Mmeod-by1_rb9X1j69X69V15bhSouI1aQQAA9VY1TOqdQ3QUN1S14ITzglhQVogjlPOGkpZ73TXcqLb1na95Gfo6sDtor0z2-THMryJ1ptHR0yDsWn2LoBhhdYAbWpm5f4ElrGedQJK15q1pCuszwfWdmlH6FzZN9nwAvoyMvlbM8R7IyTTXKoC-PgESPHvAnk2o88OQrATxCUbqogUSmolSio5pJYL55ygP7ahxOxFNnsVzV5FcxC5lHx4Pt6x4L-k_B8I-aLY</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Saberkari, Hamidreza</creator><creator>Bahrami, Sheyda</creator><creator>Shamsi, Mousa</creator><creator>Amoshahy, Mohammad Javad</creator><creator>Ghavifekr, Habib Badri</creator><creator>Sedaaghi, Mohammad Hossein</creator><general>Medknow Publications & Media Pvt Ltd</general><general>Wolters Kluwer Medknow Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20150701</creationdate><title>Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm</title><author>Saberkari, Hamidreza ; Bahrami, Sheyda ; Shamsi, Mousa ; Amoshahy, Mohammad Javad ; Ghavifekr, Habib Badri ; Sedaaghi, Mohammad Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Breast cancer</topic><topic>fuzzy clustering</topic><topic>gene expression</topic><topic>microarray</topic><topic>noise</topic><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saberkari, Hamidreza</creatorcontrib><creatorcontrib>Bahrami, Sheyda</creatorcontrib><creatorcontrib>Shamsi, Mousa</creatorcontrib><creatorcontrib>Amoshahy, Mohammad Javad</creatorcontrib><creatorcontrib>Ghavifekr, Habib Badri</creatorcontrib><creatorcontrib>Sedaaghi, Mohammad Hossein</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of medical signals and sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saberkari, Hamidreza</au><au>Bahrami, Sheyda</au><au>Shamsi, Mousa</au><au>Amoshahy, Mohammad Javad</au><au>Ghavifekr, Habib Badri</au><au>Sedaaghi, Mohammad Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm</atitle><jtitle>Journal of medical signals and sensors</jtitle><addtitle>J Med Signals Sens</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>5</volume><issue>3</issue><spage>182</spage><epage>191</epage><pages>182-191</pages><issn>2228-7477</issn><eissn>2228-7477</eissn><abstract>DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.</abstract><cop>India</cop><pub>Medknow Publications & Media Pvt Ltd</pub><pmid>26284175</pmid><doi>10.4103/2228-7477.161494</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2228-7477 |
ispartof | Journal of medical signals and sensors, 2015-07, Vol.5 (3), p.182-191 |
issn | 2228-7477 2228-7477 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2cc49e1962a54175a22f2d4e21862b0d |
source | PubMed Central |
subjects | Breast cancer fuzzy clustering gene expression microarray noise Original |
title | Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Automated%20Complementary%20DNA%20Microarray%20Segmentation%20using%20a%20Novel%20Fuzzy-based%20Algorithm&rft.jtitle=Journal%20of%20medical%20signals%20and%20sensors&rft.au=Saberkari,%20Hamidreza&rft.date=2015-07-01&rft.volume=5&rft.issue=3&rft.spage=182&rft.epage=191&rft.pages=182-191&rft.issn=2228-7477&rft.eissn=2228-7477&rft_id=info:doi/10.4103/2228-7477.161494&rft_dat=%3Cproquest_doaj_%3E1705475874%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3774-36094ee2e79a7f21886ee918b1cbec4cc44ae5ae0c31329112fc8db308bbadf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1705475874&rft_id=info:pmid/26284175&rfr_iscdi=true |