Loading…
Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics
Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate electrical and thermal...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-10, Vol.13 (19), p.2728 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343 |
container_end_page | |
container_issue | 19 |
container_start_page | 2728 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 13 |
creator | Giri, Prakash Kondapalli, Vamsi Krishna Reddy Joseph, Kavitha Mulackampilly Shanov, Vesselin Schulz, Mark |
description | Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate electrical and thermal conductivity due to CNT fabric combined with the strength of Kevlar fabric or yarn. In the material synthesis, a notable difficulty was that the CNT-silicone did not bond strongly to the Kevlar. The composites passed the Vertical Flame Test ASTM D6413 and the Forced Air Oven Test NFPA 1971. These hybrid composites can have multiple applications in areas requiring favorable conductivity, strength, and flame and heat resistance. The application areas include firefighter apparel, military equipment, conductive/smart structures, and flexible electronics. The synthesis process used to manufacture CNT-silicone/Kevlar composites yielded composite sheets with an area of 2250 cm
. The process is scalable and customizable for the synthesis of CNT composites with tailored properties. Improvements in the bonding of CNT-silicone to Kevlar are being investigated. |
doi_str_mv | 10.3390/nano13192728 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2cce140c21ee475b8695784574657b40</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772197943</galeid><doaj_id>oai_doaj_org_article_2cce140c21ee475b8695784574657b40</doaj_id><sourcerecordid>A772197943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343</originalsourceid><addsrcrecordid>eNpdks9vVCEQx4nR2Kb25tls4sVDX8tvHhdNs7HaWPVQPRNgh5UNCxXea-J_L-3WZiscmAzf-cyPDEKvCT5lTOOzbHMhjGiq6PgMHVKs9MC1Js_37AN03NoG96MJGwV7iQ6YGplkUh-i919tnoP101xjXi-uvU3WJVgsbXUlL751_jQ7GK5jir5kOPsCt8nWxYV1Nfr2Cr0INjU4fniP0M-Ljz-Wn4er758ul-dXgxdknAanqVs5zhkHwikAHTEEkArzkWNBFAlK9OJIEMoCZ5ISD57jwCgDiRlnR-hyx10VuzE3NW5t_WOKjebeUera2DpFn8BQ73sS7CkB4Eq4UWqhRi4Ul0I5jjvrw451M7strDzkqdr0BPr0J8dfZl1uDcEdwrHqhHcPhFp-z9Ams43NQ0o2Q5mboaNSrPcjZJe-_U-6KXPNfVZ3KikkoVx01elOtba9g5hD6Yl9vyvY3o89xO4_V4oSrTRnPeBkF-Braa1CeCyfYHO3GWZ_M7r8zX7Lj-J_e8D-ApjksRc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876561245</pqid></control><display><type>article</type><title>Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Giri, Prakash ; Kondapalli, Vamsi Krishna Reddy ; Joseph, Kavitha Mulackampilly ; Shanov, Vesselin ; Schulz, Mark</creator><creatorcontrib>Giri, Prakash ; Kondapalli, Vamsi Krishna Reddy ; Joseph, Kavitha Mulackampilly ; Shanov, Vesselin ; Schulz, Mark</creatorcontrib><description>Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate electrical and thermal conductivity due to CNT fabric combined with the strength of Kevlar fabric or yarn. In the material synthesis, a notable difficulty was that the CNT-silicone did not bond strongly to the Kevlar. The composites passed the Vertical Flame Test ASTM D6413 and the Forced Air Oven Test NFPA 1971. These hybrid composites can have multiple applications in areas requiring favorable conductivity, strength, and flame and heat resistance. The application areas include firefighter apparel, military equipment, conductive/smart structures, and flexible electronics. The synthesis process used to manufacture CNT-silicone/Kevlar composites yielded composite sheets with an area of 2250 cm
. The process is scalable and customizable for the synthesis of CNT composites with tailored properties. Improvements in the bonding of CNT-silicone to Kevlar are being investigated.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13192728</identifier><identifier>PMID: 37836369</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Aramid fiber reinforced plastics ; Carbon ; Carbon nanotubes ; Chemical synthesis ; Chemical vapor deposition ; CNT sheets ; CNT-silicone ; Composite materials ; Elastomers ; Electrical resistivity ; Fabrics ; Fire resistance ; Firefighters ; Flexible components ; Gases ; Heat resistance ; Hybrid composites ; Identification and classification ; Kevlar (trademark) ; Kevlar fabric ; Kevlar veil ; Kevlar yarn ; Methods ; Military equipment ; Nanotubes ; Properties ; Scanning electron microscopy ; Silicones ; Smart structures ; Synthesis ; Temperature ; Tensile strength ; Textiles ; Thermal conductivity ; Thermal resistance ; Yarns</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-10, Vol.13 (19), p.2728</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343</citedby><cites>FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343</cites><orcidid>0000-0002-0041-7821 ; 0000-0002-5550-3997 ; 0000-0002-0539-7102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2876561245/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2876561245?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37836369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giri, Prakash</creatorcontrib><creatorcontrib>Kondapalli, Vamsi Krishna Reddy</creatorcontrib><creatorcontrib>Joseph, Kavitha Mulackampilly</creatorcontrib><creatorcontrib>Shanov, Vesselin</creatorcontrib><creatorcontrib>Schulz, Mark</creatorcontrib><title>Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate electrical and thermal conductivity due to CNT fabric combined with the strength of Kevlar fabric or yarn. In the material synthesis, a notable difficulty was that the CNT-silicone did not bond strongly to the Kevlar. The composites passed the Vertical Flame Test ASTM D6413 and the Forced Air Oven Test NFPA 1971. These hybrid composites can have multiple applications in areas requiring favorable conductivity, strength, and flame and heat resistance. The application areas include firefighter apparel, military equipment, conductive/smart structures, and flexible electronics. The synthesis process used to manufacture CNT-silicone/Kevlar composites yielded composite sheets with an area of 2250 cm
. The process is scalable and customizable for the synthesis of CNT composites with tailored properties. Improvements in the bonding of CNT-silicone to Kevlar are being investigated.</description><subject>Analysis</subject><subject>Aramid fiber reinforced plastics</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>CNT sheets</subject><subject>CNT-silicone</subject><subject>Composite materials</subject><subject>Elastomers</subject><subject>Electrical resistivity</subject><subject>Fabrics</subject><subject>Fire resistance</subject><subject>Firefighters</subject><subject>Flexible components</subject><subject>Gases</subject><subject>Heat resistance</subject><subject>Hybrid composites</subject><subject>Identification and classification</subject><subject>Kevlar (trademark)</subject><subject>Kevlar fabric</subject><subject>Kevlar veil</subject><subject>Kevlar yarn</subject><subject>Methods</subject><subject>Military equipment</subject><subject>Nanotubes</subject><subject>Properties</subject><subject>Scanning electron microscopy</subject><subject>Silicones</subject><subject>Smart structures</subject><subject>Synthesis</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Textiles</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Yarns</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9vVCEQx4nR2Kb25tls4sVDX8tvHhdNs7HaWPVQPRNgh5UNCxXea-J_L-3WZiscmAzf-cyPDEKvCT5lTOOzbHMhjGiq6PgMHVKs9MC1Js_37AN03NoG96MJGwV7iQ6YGplkUh-i919tnoP101xjXi-uvU3WJVgsbXUlL751_jQ7GK5jir5kOPsCt8nWxYV1Nfr2Cr0INjU4fniP0M-Ljz-Wn4er758ul-dXgxdknAanqVs5zhkHwikAHTEEkArzkWNBFAlK9OJIEMoCZ5ISD57jwCgDiRlnR-hyx10VuzE3NW5t_WOKjebeUera2DpFn8BQ73sS7CkB4Eq4UWqhRi4Ul0I5jjvrw451M7strDzkqdr0BPr0J8dfZl1uDcEdwrHqhHcPhFp-z9Ams43NQ0o2Q5mboaNSrPcjZJe-_U-6KXPNfVZ3KikkoVx01elOtba9g5hD6Yl9vyvY3o89xO4_V4oSrTRnPeBkF-Braa1CeCyfYHO3GWZ_M7r8zX7Lj-J_e8D-ApjksRc</recordid><startdate>20231008</startdate><enddate>20231008</enddate><creator>Giri, Prakash</creator><creator>Kondapalli, Vamsi Krishna Reddy</creator><creator>Joseph, Kavitha Mulackampilly</creator><creator>Shanov, Vesselin</creator><creator>Schulz, Mark</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0041-7821</orcidid><orcidid>https://orcid.org/0000-0002-5550-3997</orcidid><orcidid>https://orcid.org/0000-0002-0539-7102</orcidid></search><sort><creationdate>20231008</creationdate><title>Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics</title><author>Giri, Prakash ; Kondapalli, Vamsi Krishna Reddy ; Joseph, Kavitha Mulackampilly ; Shanov, Vesselin ; Schulz, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Aramid fiber reinforced plastics</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>CNT sheets</topic><topic>CNT-silicone</topic><topic>Composite materials</topic><topic>Elastomers</topic><topic>Electrical resistivity</topic><topic>Fabrics</topic><topic>Fire resistance</topic><topic>Firefighters</topic><topic>Flexible components</topic><topic>Gases</topic><topic>Heat resistance</topic><topic>Hybrid composites</topic><topic>Identification and classification</topic><topic>Kevlar (trademark)</topic><topic>Kevlar fabric</topic><topic>Kevlar veil</topic><topic>Kevlar yarn</topic><topic>Methods</topic><topic>Military equipment</topic><topic>Nanotubes</topic><topic>Properties</topic><topic>Scanning electron microscopy</topic><topic>Silicones</topic><topic>Smart structures</topic><topic>Synthesis</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Textiles</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Yarns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giri, Prakash</creatorcontrib><creatorcontrib>Kondapalli, Vamsi Krishna Reddy</creatorcontrib><creatorcontrib>Joseph, Kavitha Mulackampilly</creatorcontrib><creatorcontrib>Shanov, Vesselin</creatorcontrib><creatorcontrib>Schulz, Mark</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giri, Prakash</au><au>Kondapalli, Vamsi Krishna Reddy</au><au>Joseph, Kavitha Mulackampilly</au><au>Shanov, Vesselin</au><au>Schulz, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2023-10-08</date><risdate>2023</risdate><volume>13</volume><issue>19</issue><spage>2728</spage><pages>2728-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate electrical and thermal conductivity due to CNT fabric combined with the strength of Kevlar fabric or yarn. In the material synthesis, a notable difficulty was that the CNT-silicone did not bond strongly to the Kevlar. The composites passed the Vertical Flame Test ASTM D6413 and the Forced Air Oven Test NFPA 1971. These hybrid composites can have multiple applications in areas requiring favorable conductivity, strength, and flame and heat resistance. The application areas include firefighter apparel, military equipment, conductive/smart structures, and flexible electronics. The synthesis process used to manufacture CNT-silicone/Kevlar composites yielded composite sheets with an area of 2250 cm
. The process is scalable and customizable for the synthesis of CNT composites with tailored properties. Improvements in the bonding of CNT-silicone to Kevlar are being investigated.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37836369</pmid><doi>10.3390/nano13192728</doi><orcidid>https://orcid.org/0000-0002-0041-7821</orcidid><orcidid>https://orcid.org/0000-0002-5550-3997</orcidid><orcidid>https://orcid.org/0000-0002-0539-7102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2023-10, Vol.13 (19), p.2728 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2cce140c21ee475b8695784574657b40 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Analysis Aramid fiber reinforced plastics Carbon Carbon nanotubes Chemical synthesis Chemical vapor deposition CNT sheets CNT-silicone Composite materials Elastomers Electrical resistivity Fabrics Fire resistance Firefighters Flexible components Gases Heat resistance Hybrid composites Identification and classification Kevlar (trademark) Kevlar fabric Kevlar veil Kevlar yarn Methods Military equipment Nanotubes Properties Scanning electron microscopy Silicones Smart structures Synthesis Temperature Tensile strength Textiles Thermal conductivity Thermal resistance Yarns |
title | Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturing%20Scalable%20Carbon%20Nanotube-Silicone/Kevlar%20Fabrics&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Giri,%20Prakash&rft.date=2023-10-08&rft.volume=13&rft.issue=19&rft.spage=2728&rft.pages=2728-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13192728&rft_dat=%3Cgale_doaj_%3EA772197943%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876561245&rft_id=info:pmid/37836369&rft_galeid=A772197943&rfr_iscdi=true |