Loading…

Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics

Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate electrical and thermal...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-10, Vol.13 (19), p.2728
Main Authors: Giri, Prakash, Kondapalli, Vamsi Krishna Reddy, Joseph, Kavitha Mulackampilly, Shanov, Vesselin, Schulz, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343
cites cdi_FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343
container_end_page
container_issue 19
container_start_page 2728
container_title Nanomaterials (Basel, Switzerland)
container_volume 13
creator Giri, Prakash
Kondapalli, Vamsi Krishna Reddy
Joseph, Kavitha Mulackampilly
Shanov, Vesselin
Schulz, Mark
description Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate electrical and thermal conductivity due to CNT fabric combined with the strength of Kevlar fabric or yarn. In the material synthesis, a notable difficulty was that the CNT-silicone did not bond strongly to the Kevlar. The composites passed the Vertical Flame Test ASTM D6413 and the Forced Air Oven Test NFPA 1971. These hybrid composites can have multiple applications in areas requiring favorable conductivity, strength, and flame and heat resistance. The application areas include firefighter apparel, military equipment, conductive/smart structures, and flexible electronics. The synthesis process used to manufacture CNT-silicone/Kevlar composites yielded composite sheets with an area of 2250 cm . The process is scalable and customizable for the synthesis of CNT composites with tailored properties. Improvements in the bonding of CNT-silicone to Kevlar are being investigated.
doi_str_mv 10.3390/nano13192728
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2cce140c21ee475b8695784574657b40</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772197943</galeid><doaj_id>oai_doaj_org_article_2cce140c21ee475b8695784574657b40</doaj_id><sourcerecordid>A772197943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343</originalsourceid><addsrcrecordid>eNpdks9vVCEQx4nR2Kb25tls4sVDX8tvHhdNs7HaWPVQPRNgh5UNCxXea-J_L-3WZiscmAzf-cyPDEKvCT5lTOOzbHMhjGiq6PgMHVKs9MC1Js_37AN03NoG96MJGwV7iQ6YGplkUh-i919tnoP101xjXi-uvU3WJVgsbXUlL751_jQ7GK5jir5kOPsCt8nWxYV1Nfr2Cr0INjU4fniP0M-Ljz-Wn4er758ul-dXgxdknAanqVs5zhkHwikAHTEEkArzkWNBFAlK9OJIEMoCZ5ISD57jwCgDiRlnR-hyx10VuzE3NW5t_WOKjebeUera2DpFn8BQ73sS7CkB4Eq4UWqhRi4Ul0I5jjvrw451M7strDzkqdr0BPr0J8dfZl1uDcEdwrHqhHcPhFp-z9Ams43NQ0o2Q5mboaNSrPcjZJe-_U-6KXPNfVZ3KikkoVx01elOtba9g5hD6Yl9vyvY3o89xO4_V4oSrTRnPeBkF-Braa1CeCyfYHO3GWZ_M7r8zX7Lj-J_e8D-ApjksRc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2876561245</pqid></control><display><type>article</type><title>Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Giri, Prakash ; Kondapalli, Vamsi Krishna Reddy ; Joseph, Kavitha Mulackampilly ; Shanov, Vesselin ; Schulz, Mark</creator><creatorcontrib>Giri, Prakash ; Kondapalli, Vamsi Krishna Reddy ; Joseph, Kavitha Mulackampilly ; Shanov, Vesselin ; Schulz, Mark</creatorcontrib><description>Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate electrical and thermal conductivity due to CNT fabric combined with the strength of Kevlar fabric or yarn. In the material synthesis, a notable difficulty was that the CNT-silicone did not bond strongly to the Kevlar. The composites passed the Vertical Flame Test ASTM D6413 and the Forced Air Oven Test NFPA 1971. These hybrid composites can have multiple applications in areas requiring favorable conductivity, strength, and flame and heat resistance. The application areas include firefighter apparel, military equipment, conductive/smart structures, and flexible electronics. The synthesis process used to manufacture CNT-silicone/Kevlar composites yielded composite sheets with an area of 2250 cm . The process is scalable and customizable for the synthesis of CNT composites with tailored properties. Improvements in the bonding of CNT-silicone to Kevlar are being investigated.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13192728</identifier><identifier>PMID: 37836369</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Analysis ; Aramid fiber reinforced plastics ; Carbon ; Carbon nanotubes ; Chemical synthesis ; Chemical vapor deposition ; CNT sheets ; CNT-silicone ; Composite materials ; Elastomers ; Electrical resistivity ; Fabrics ; Fire resistance ; Firefighters ; Flexible components ; Gases ; Heat resistance ; Hybrid composites ; Identification and classification ; Kevlar (trademark) ; Kevlar fabric ; Kevlar veil ; Kevlar yarn ; Methods ; Military equipment ; Nanotubes ; Properties ; Scanning electron microscopy ; Silicones ; Smart structures ; Synthesis ; Temperature ; Tensile strength ; Textiles ; Thermal conductivity ; Thermal resistance ; Yarns</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-10, Vol.13 (19), p.2728</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343</citedby><cites>FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343</cites><orcidid>0000-0002-0041-7821 ; 0000-0002-5550-3997 ; 0000-0002-0539-7102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2876561245/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2876561245?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37836369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giri, Prakash</creatorcontrib><creatorcontrib>Kondapalli, Vamsi Krishna Reddy</creatorcontrib><creatorcontrib>Joseph, Kavitha Mulackampilly</creatorcontrib><creatorcontrib>Shanov, Vesselin</creatorcontrib><creatorcontrib>Schulz, Mark</creatorcontrib><title>Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate electrical and thermal conductivity due to CNT fabric combined with the strength of Kevlar fabric or yarn. In the material synthesis, a notable difficulty was that the CNT-silicone did not bond strongly to the Kevlar. The composites passed the Vertical Flame Test ASTM D6413 and the Forced Air Oven Test NFPA 1971. These hybrid composites can have multiple applications in areas requiring favorable conductivity, strength, and flame and heat resistance. The application areas include firefighter apparel, military equipment, conductive/smart structures, and flexible electronics. The synthesis process used to manufacture CNT-silicone/Kevlar composites yielded composite sheets with an area of 2250 cm . The process is scalable and customizable for the synthesis of CNT composites with tailored properties. Improvements in the bonding of CNT-silicone to Kevlar are being investigated.</description><subject>Analysis</subject><subject>Aramid fiber reinforced plastics</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>CNT sheets</subject><subject>CNT-silicone</subject><subject>Composite materials</subject><subject>Elastomers</subject><subject>Electrical resistivity</subject><subject>Fabrics</subject><subject>Fire resistance</subject><subject>Firefighters</subject><subject>Flexible components</subject><subject>Gases</subject><subject>Heat resistance</subject><subject>Hybrid composites</subject><subject>Identification and classification</subject><subject>Kevlar (trademark)</subject><subject>Kevlar fabric</subject><subject>Kevlar veil</subject><subject>Kevlar yarn</subject><subject>Methods</subject><subject>Military equipment</subject><subject>Nanotubes</subject><subject>Properties</subject><subject>Scanning electron microscopy</subject><subject>Silicones</subject><subject>Smart structures</subject><subject>Synthesis</subject><subject>Temperature</subject><subject>Tensile strength</subject><subject>Textiles</subject><subject>Thermal conductivity</subject><subject>Thermal resistance</subject><subject>Yarns</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9vVCEQx4nR2Kb25tls4sVDX8tvHhdNs7HaWPVQPRNgh5UNCxXea-J_L-3WZiscmAzf-cyPDEKvCT5lTOOzbHMhjGiq6PgMHVKs9MC1Js_37AN03NoG96MJGwV7iQ6YGplkUh-i919tnoP101xjXi-uvU3WJVgsbXUlL751_jQ7GK5jir5kOPsCt8nWxYV1Nfr2Cr0INjU4fniP0M-Ljz-Wn4er758ul-dXgxdknAanqVs5zhkHwikAHTEEkArzkWNBFAlK9OJIEMoCZ5ISD57jwCgDiRlnR-hyx10VuzE3NW5t_WOKjebeUera2DpFn8BQ73sS7CkB4Eq4UWqhRi4Ul0I5jjvrw451M7strDzkqdr0BPr0J8dfZl1uDcEdwrHqhHcPhFp-z9Ams43NQ0o2Q5mboaNSrPcjZJe-_U-6KXPNfVZ3KikkoVx01elOtba9g5hD6Yl9vyvY3o89xO4_V4oSrTRnPeBkF-Braa1CeCyfYHO3GWZ_M7r8zX7Lj-J_e8D-ApjksRc</recordid><startdate>20231008</startdate><enddate>20231008</enddate><creator>Giri, Prakash</creator><creator>Kondapalli, Vamsi Krishna Reddy</creator><creator>Joseph, Kavitha Mulackampilly</creator><creator>Shanov, Vesselin</creator><creator>Schulz, Mark</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0041-7821</orcidid><orcidid>https://orcid.org/0000-0002-5550-3997</orcidid><orcidid>https://orcid.org/0000-0002-0539-7102</orcidid></search><sort><creationdate>20231008</creationdate><title>Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics</title><author>Giri, Prakash ; Kondapalli, Vamsi Krishna Reddy ; Joseph, Kavitha Mulackampilly ; Shanov, Vesselin ; Schulz, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Aramid fiber reinforced plastics</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>CNT sheets</topic><topic>CNT-silicone</topic><topic>Composite materials</topic><topic>Elastomers</topic><topic>Electrical resistivity</topic><topic>Fabrics</topic><topic>Fire resistance</topic><topic>Firefighters</topic><topic>Flexible components</topic><topic>Gases</topic><topic>Heat resistance</topic><topic>Hybrid composites</topic><topic>Identification and classification</topic><topic>Kevlar (trademark)</topic><topic>Kevlar fabric</topic><topic>Kevlar veil</topic><topic>Kevlar yarn</topic><topic>Methods</topic><topic>Military equipment</topic><topic>Nanotubes</topic><topic>Properties</topic><topic>Scanning electron microscopy</topic><topic>Silicones</topic><topic>Smart structures</topic><topic>Synthesis</topic><topic>Temperature</topic><topic>Tensile strength</topic><topic>Textiles</topic><topic>Thermal conductivity</topic><topic>Thermal resistance</topic><topic>Yarns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giri, Prakash</creatorcontrib><creatorcontrib>Kondapalli, Vamsi Krishna Reddy</creatorcontrib><creatorcontrib>Joseph, Kavitha Mulackampilly</creatorcontrib><creatorcontrib>Shanov, Vesselin</creatorcontrib><creatorcontrib>Schulz, Mark</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giri, Prakash</au><au>Kondapalli, Vamsi Krishna Reddy</au><au>Joseph, Kavitha Mulackampilly</au><au>Shanov, Vesselin</au><au>Schulz, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2023-10-08</date><risdate>2023</risdate><volume>13</volume><issue>19</issue><spage>2728</spage><pages>2728-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Carbon nanotube (CNT) hybrid composites were formed by combining a CNT and silicone elastomer solution with Kevlar yarn, Kevlar fabric, and Kevlar veil materials. The integration of a CNT-silicone matrix with Kevlar yarn and fabric materials produced a composite with moderate electrical and thermal conductivity due to CNT fabric combined with the strength of Kevlar fabric or yarn. In the material synthesis, a notable difficulty was that the CNT-silicone did not bond strongly to the Kevlar. The composites passed the Vertical Flame Test ASTM D6413 and the Forced Air Oven Test NFPA 1971. These hybrid composites can have multiple applications in areas requiring favorable conductivity, strength, and flame and heat resistance. The application areas include firefighter apparel, military equipment, conductive/smart structures, and flexible electronics. The synthesis process used to manufacture CNT-silicone/Kevlar composites yielded composite sheets with an area of 2250 cm . The process is scalable and customizable for the synthesis of CNT composites with tailored properties. Improvements in the bonding of CNT-silicone to Kevlar are being investigated.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37836369</pmid><doi>10.3390/nano13192728</doi><orcidid>https://orcid.org/0000-0002-0041-7821</orcidid><orcidid>https://orcid.org/0000-0002-5550-3997</orcidid><orcidid>https://orcid.org/0000-0002-0539-7102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2023-10, Vol.13 (19), p.2728
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2cce140c21ee475b8695784574657b40
source PMC (PubMed Central); Publicly Available Content (ProQuest)
subjects Analysis
Aramid fiber reinforced plastics
Carbon
Carbon nanotubes
Chemical synthesis
Chemical vapor deposition
CNT sheets
CNT-silicone
Composite materials
Elastomers
Electrical resistivity
Fabrics
Fire resistance
Firefighters
Flexible components
Gases
Heat resistance
Hybrid composites
Identification and classification
Kevlar (trademark)
Kevlar fabric
Kevlar veil
Kevlar yarn
Methods
Military equipment
Nanotubes
Properties
Scanning electron microscopy
Silicones
Smart structures
Synthesis
Temperature
Tensile strength
Textiles
Thermal conductivity
Thermal resistance
Yarns
title Manufacturing Scalable Carbon Nanotube-Silicone/Kevlar Fabrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturing%20Scalable%20Carbon%20Nanotube-Silicone/Kevlar%20Fabrics&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Giri,%20Prakash&rft.date=2023-10-08&rft.volume=13&rft.issue=19&rft.spage=2728&rft.pages=2728-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13192728&rft_dat=%3Cgale_doaj_%3EA772197943%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-b92bdb4434e142ee280efe67048405171f759131f57ae43621cec40f323e60343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2876561245&rft_id=info:pmid/37836369&rft_galeid=A772197943&rfr_iscdi=true