Loading…

An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network

Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld 2016, Vol.2016 (2016), p.1-11
Main Authors: Vimalarani, C., Sivanandam, S. N., Subramanian, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4910-a0465da79a16f03bcf5e572d76062319bc339910a8917a1a9b65db9389c3b0ed3
cites cdi_FETCH-LOGICAL-c4910-a0465da79a16f03bcf5e572d76062319bc339910a8917a1a9b65db9389c3b0ed3
container_end_page 11
container_issue 2016
container_start_page 1
container_title TheScientificWorld
container_volume 2016
creator Vimalarani, C.
Sivanandam, S. N.
Subramanian, R.
description Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
doi_str_mv 10.1155/2016/8658760
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2cd74a159eb042eda13aa5f7fc8d0ea5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A510110650</galeid><doaj_id>oai_doaj_org_article_2cd74a159eb042eda13aa5f7fc8d0ea5</doaj_id><sourcerecordid>A510110650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4910-a0465da79a16f03bcf5e572d76062319bc339910a8917a1a9b65db9389c3b0ed3</originalsourceid><addsrcrecordid>eNqNksFv0zAUxiMEYmVw44wicUGCbHYc2_EFqVQDJk0UaSAQF-vFeUldErvYKdP463FpGYwT8sH2e7_32c_-suwxJSeUcn5aEipOa8FrKcidbEY5k4Wsqs93s1nJuCgErchR9iDGNSGslpTfz45KUde0lGyWfZm7_MytwBls8_eXy-IVxLRaDNs4YbCuT1kM_XW-3Ex2tD9gst7l86H3wU6rMe98yD_ZgAPGmF-ii2n_DqcrH74-zO51MER8dJiPs4-vzz4s3hYXyzfni_lFYSpFSQGkErwFqYCKjrDGdBy5LNvUjigZVY1hTCUQakUlUFBNwhvFamVYQ7Blx9n5Xrf1sNabYEcI19qD1b8CPvQawmTNgLo0rayAcoUNqUpsgTIA3snO1C1B4Enr5V5rs21GbA26KcBwS_R2xtmV7v13XUkmFJFJ4NlBIPhvW4yTHm00OAzg0G-jplLw1IdiVUKf_oOu_Ta49FSJ4lKU6Y921Mme6iE1YF3n07kmjRZHa7zDzqb4nFNCKRGcpIIX-wITfIwBu5vbU6J3jtE7x-iDYxL-5O-Ob-DfFknA8z2wsq6FK_ufcpgY7OAPTcv0n4r9BBeE0a0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757628814</pqid></control><display><type>article</type><title>An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network</title><source>Wiley-Blackwell Open Access Collection</source><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><creator>Vimalarani, C. ; Sivanandam, S. N. ; Subramanian, R.</creator><contributor>Ramachandran, Muthu</contributor><creatorcontrib>Vimalarani, C. ; Sivanandam, S. N. ; Subramanian, R. ; Ramachandran, Muthu</creatorcontrib><description>Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.</description><identifier>ISSN: 2356-6140</identifier><identifier>ISSN: 1537-744X</identifier><identifier>EISSN: 1537-744X</identifier><identifier>DOI: 10.1155/2016/8658760</identifier><identifier>PMID: 26881273</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Architectural engineering ; Atoms &amp; subatomic particles ; Clustering ; Communication ; Competition ; Computer science ; Data processing ; Data transmission ; Energy conservation ; Energy consumption ; Energy use ; Engineering ; Environmental monitoring ; Mathematical optimization ; Optimization techniques ; Power consumption ; Sensors ; Technology application ; Water levels ; Wireless networks ; Wireless sensor networks</subject><ispartof>TheScientificWorld, 2016, Vol.2016 (2016), p.1-11</ispartof><rights>Copyright © 2016 C. Vimalarani et al.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2016 C. Vimalarani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright © 2016 C. Vimalarani et al. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4910-a0465da79a16f03bcf5e572d76062319bc339910a8917a1a9b65db9389c3b0ed3</citedby><cites>FETCH-LOGICAL-c4910-a0465da79a16f03bcf5e572d76062319bc339910a8917a1a9b65db9389c3b0ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1757628814/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1757628814?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,25753,27923,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26881273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ramachandran, Muthu</contributor><creatorcontrib>Vimalarani, C.</creatorcontrib><creatorcontrib>Sivanandam, S. N.</creatorcontrib><creatorcontrib>Subramanian, R.</creatorcontrib><title>An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network</title><title>TheScientificWorld</title><addtitle>ScientificWorldJournal</addtitle><description>Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.</description><subject>Algorithms</subject><subject>Architectural engineering</subject><subject>Atoms &amp; subatomic particles</subject><subject>Clustering</subject><subject>Communication</subject><subject>Competition</subject><subject>Computer science</subject><subject>Data processing</subject><subject>Data transmission</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Energy use</subject><subject>Engineering</subject><subject>Environmental monitoring</subject><subject>Mathematical optimization</subject><subject>Optimization techniques</subject><subject>Power consumption</subject><subject>Sensors</subject><subject>Technology application</subject><subject>Water levels</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>2356-6140</issn><issn>1537-744X</issn><issn>1537-744X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNksFv0zAUxiMEYmVw44wicUGCbHYc2_EFqVQDJk0UaSAQF-vFeUldErvYKdP463FpGYwT8sH2e7_32c_-suwxJSeUcn5aEipOa8FrKcidbEY5k4Wsqs93s1nJuCgErchR9iDGNSGslpTfz45KUde0lGyWfZm7_MytwBls8_eXy-IVxLRaDNs4YbCuT1kM_XW-3Ex2tD9gst7l86H3wU6rMe98yD_ZgAPGmF-ii2n_DqcrH74-zO51MER8dJiPs4-vzz4s3hYXyzfni_lFYSpFSQGkErwFqYCKjrDGdBy5LNvUjigZVY1hTCUQakUlUFBNwhvFamVYQ7Blx9n5Xrf1sNabYEcI19qD1b8CPvQawmTNgLo0rayAcoUNqUpsgTIA3snO1C1B4Enr5V5rs21GbA26KcBwS_R2xtmV7v13XUkmFJFJ4NlBIPhvW4yTHm00OAzg0G-jplLw1IdiVUKf_oOu_Ta49FSJ4lKU6Y921Mme6iE1YF3n07kmjRZHa7zDzqb4nFNCKRGcpIIX-wITfIwBu5vbU6J3jtE7x-iDYxL-5O-Ob-DfFknA8z2wsq6FK_ufcpgY7OAPTcv0n4r9BBeE0a0</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Vimalarani, C.</creator><creator>Sivanandam, S. N.</creator><creator>Subramanian, R.</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>2016</creationdate><title>An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network</title><author>Vimalarani, C. ; Sivanandam, S. N. ; Subramanian, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4910-a0465da79a16f03bcf5e572d76062319bc339910a8917a1a9b65db9389c3b0ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Architectural engineering</topic><topic>Atoms &amp; subatomic particles</topic><topic>Clustering</topic><topic>Communication</topic><topic>Competition</topic><topic>Computer science</topic><topic>Data processing</topic><topic>Data transmission</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Energy use</topic><topic>Engineering</topic><topic>Environmental monitoring</topic><topic>Mathematical optimization</topic><topic>Optimization techniques</topic><topic>Power consumption</topic><topic>Sensors</topic><topic>Technology application</topic><topic>Water levels</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vimalarani, C.</creatorcontrib><creatorcontrib>Sivanandam, S. N.</creatorcontrib><creatorcontrib>Subramanian, R.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>TheScientificWorld</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vimalarani, C.</au><au>Sivanandam, S. N.</au><au>Subramanian, R.</au><au>Ramachandran, Muthu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network</atitle><jtitle>TheScientificWorld</jtitle><addtitle>ScientificWorldJournal</addtitle><date>2016</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2356-6140</issn><issn>1537-744X</issn><eissn>1537-744X</eissn><abstract>Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>26881273</pmid><doi>10.1155/2016/8658760</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2356-6140
ispartof TheScientificWorld, 2016, Vol.2016 (2016), p.1-11
issn 2356-6140
1537-744X
1537-744X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2cd74a159eb042eda13aa5f7fc8d0ea5
source Wiley-Blackwell Open Access Collection; Open Access: PubMed Central; ProQuest - Publicly Available Content Database
subjects Algorithms
Architectural engineering
Atoms & subatomic particles
Clustering
Communication
Competition
Computer science
Data processing
Data transmission
Energy conservation
Energy consumption
Energy use
Engineering
Environmental monitoring
Mathematical optimization
Optimization techniques
Power consumption
Sensors
Technology application
Water levels
Wireless networks
Wireless sensor networks
title An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20PSO-Based%20Clustering%20Energy%20Optimization%20Algorithm%20for%20Wireless%20Sensor%20Network&rft.jtitle=TheScientificWorld&rft.au=Vimalarani,%20C.&rft.date=2016&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2356-6140&rft.eissn=1537-744X&rft_id=info:doi/10.1155/2016/8658760&rft_dat=%3Cgale_doaj_%3EA510110650%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4910-a0465da79a16f03bcf5e572d76062319bc339910a8917a1a9b65db9389c3b0ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757628814&rft_id=info:pmid/26881273&rft_galeid=A510110650&rfr_iscdi=true