Loading…
Efficient Three-Step Class of Eighth-Order Multiple Root Solvers and Their Dynamics
This article proposes a wide general class of optimal eighth-order techniques for approximating multiple zeros of scalar nonlinear equations. The new strategy adopts a weight function with an approach involving the function-to-function ratio. An extensive convergence analysis is performed for the ei...
Saved in:
Published in: | Symmetry (Basel) 2019-07, Vol.11 (7), p.837 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-97f3403d8fedabe86017ba6a7aaec56484fbdadce22addb5d2164e98f5e270a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-97f3403d8fedabe86017ba6a7aaec56484fbdadce22addb5d2164e98f5e270a43 |
container_end_page | |
container_issue | 7 |
container_start_page | 837 |
container_title | Symmetry (Basel) |
container_volume | 11 |
creator | Alharbey, R. A. Kansal, Munish Behl, Ramandeep Machado, J. A. Tenreiro |
description | This article proposes a wide general class of optimal eighth-order techniques for approximating multiple zeros of scalar nonlinear equations. The new strategy adopts a weight function with an approach involving the function-to-function ratio. An extensive convergence analysis is performed for the eighth-order convergence of the algorithm. It is verified that some of the existing techniques are special cases of the new scheme. The algorithms are tested in several real-life problems to check their accuracy and applicability. The results of the dynamical study confirm that the new methods are more stable and accurate than the existing schemes. |
doi_str_mv | 10.3390/sym11070837 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2cebf2ae2fa346288d4dea7300b1835a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2cebf2ae2fa346288d4dea7300b1835a</doaj_id><sourcerecordid>2550259205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-97f3403d8fedabe86017ba6a7aaec56484fbdadce22addb5d2164e98f5e270a43</originalsourceid><addsrcrecordid>eNpNkU9Lw0AQxYMoWLQnv8CCR4lu9k-yOUqtWqgUbD0vk-xsuyXNxt1U6Lc3WpHOZYbhze8NvCS5yeg95yV9iIddltGCKl6cJSNGC56qshTnJ_NlMo5xS4eSVIqcjpLl1FpXO2x7stoExHTZY0cmDcRIvCVTt970m3QRDAbytm961zVI3r3vydI3XxgigdYMp-gCeTq0sHN1vE4uLDQRx3_9Kvl4nq4mr-l88TKbPM7TmueiT8vCckG5URYNVKhymhUV5FAAYC1zoYStDJgaGQNjKmlYlgsslZXICgqCXyWzI9d42OouuB2Eg_bg9O_Ch7WG0Lu6Qc1qrCwDZBa4yJlSRhiEglNaZYpLGFi3R1YX_OceY6-3fh_a4X3NpKRMlozKQXV3VNXBxxjQ_rtmVP-EoE9C4N84knnx</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550259205</pqid></control><display><type>article</type><title>Efficient Three-Step Class of Eighth-Order Multiple Root Solvers and Their Dynamics</title><source>Access via ProQuest (Open Access)</source><creator>Alharbey, R. A. ; Kansal, Munish ; Behl, Ramandeep ; Machado, J. A. Tenreiro</creator><creatorcontrib>Alharbey, R. A. ; Kansal, Munish ; Behl, Ramandeep ; Machado, J. A. Tenreiro</creatorcontrib><description>This article proposes a wide general class of optimal eighth-order techniques for approximating multiple zeros of scalar nonlinear equations. The new strategy adopts a weight function with an approach involving the function-to-function ratio. An extensive convergence analysis is performed for the eighth-order convergence of the algorithm. It is verified that some of the existing techniques are special cases of the new scheme. The algorithms are tested in several real-life problems to check their accuracy and applicability. The results of the dynamical study confirm that the new methods are more stable and accurate than the existing schemes.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym11070837</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Convergence ; Global positioning systems ; GPS ; multiple roots ; Neighborhoods ; Nonlinear equations ; optimal iterative methods ; order of convergence ; scalar equations ; Weighting functions</subject><ispartof>Symmetry (Basel), 2019-07, Vol.11 (7), p.837</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-97f3403d8fedabe86017ba6a7aaec56484fbdadce22addb5d2164e98f5e270a43</citedby><cites>FETCH-LOGICAL-c364t-97f3403d8fedabe86017ba6a7aaec56484fbdadce22addb5d2164e98f5e270a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2550259205/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2550259205?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Alharbey, R. A.</creatorcontrib><creatorcontrib>Kansal, Munish</creatorcontrib><creatorcontrib>Behl, Ramandeep</creatorcontrib><creatorcontrib>Machado, J. A. Tenreiro</creatorcontrib><title>Efficient Three-Step Class of Eighth-Order Multiple Root Solvers and Their Dynamics</title><title>Symmetry (Basel)</title><description>This article proposes a wide general class of optimal eighth-order techniques for approximating multiple zeros of scalar nonlinear equations. The new strategy adopts a weight function with an approach involving the function-to-function ratio. An extensive convergence analysis is performed for the eighth-order convergence of the algorithm. It is verified that some of the existing techniques are special cases of the new scheme. The algorithms are tested in several real-life problems to check their accuracy and applicability. The results of the dynamical study confirm that the new methods are more stable and accurate than the existing schemes.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>multiple roots</subject><subject>Neighborhoods</subject><subject>Nonlinear equations</subject><subject>optimal iterative methods</subject><subject>order of convergence</subject><subject>scalar equations</subject><subject>Weighting functions</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9Lw0AQxYMoWLQnv8CCR4lu9k-yOUqtWqgUbD0vk-xsuyXNxt1U6Lc3WpHOZYbhze8NvCS5yeg95yV9iIddltGCKl6cJSNGC56qshTnJ_NlMo5xS4eSVIqcjpLl1FpXO2x7stoExHTZY0cmDcRIvCVTt970m3QRDAbytm961zVI3r3vydI3XxgigdYMp-gCeTq0sHN1vE4uLDQRx3_9Kvl4nq4mr-l88TKbPM7TmueiT8vCckG5URYNVKhymhUV5FAAYC1zoYStDJgaGQNjKmlYlgsslZXICgqCXyWzI9d42OouuB2Eg_bg9O_Ch7WG0Lu6Qc1qrCwDZBa4yJlSRhiEglNaZYpLGFi3R1YX_OceY6-3fh_a4X3NpKRMlozKQXV3VNXBxxjQ_rtmVP-EoE9C4N84knnx</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Alharbey, R. A.</creator><creator>Kansal, Munish</creator><creator>Behl, Ramandeep</creator><creator>Machado, J. A. Tenreiro</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20190701</creationdate><title>Efficient Three-Step Class of Eighth-Order Multiple Root Solvers and Their Dynamics</title><author>Alharbey, R. A. ; Kansal, Munish ; Behl, Ramandeep ; Machado, J. A. Tenreiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-97f3403d8fedabe86017ba6a7aaec56484fbdadce22addb5d2164e98f5e270a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>multiple roots</topic><topic>Neighborhoods</topic><topic>Nonlinear equations</topic><topic>optimal iterative methods</topic><topic>order of convergence</topic><topic>scalar equations</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alharbey, R. A.</creatorcontrib><creatorcontrib>Kansal, Munish</creatorcontrib><creatorcontrib>Behl, Ramandeep</creatorcontrib><creatorcontrib>Machado, J. A. Tenreiro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alharbey, R. A.</au><au>Kansal, Munish</au><au>Behl, Ramandeep</au><au>Machado, J. A. Tenreiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Three-Step Class of Eighth-Order Multiple Root Solvers and Their Dynamics</atitle><jtitle>Symmetry (Basel)</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>11</volume><issue>7</issue><spage>837</spage><pages>837-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>This article proposes a wide general class of optimal eighth-order techniques for approximating multiple zeros of scalar nonlinear equations. The new strategy adopts a weight function with an approach involving the function-to-function ratio. An extensive convergence analysis is performed for the eighth-order convergence of the algorithm. It is verified that some of the existing techniques are special cases of the new scheme. The algorithms are tested in several real-life problems to check their accuracy and applicability. The results of the dynamical study confirm that the new methods are more stable and accurate than the existing schemes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym11070837</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2019-07, Vol.11 (7), p.837 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2cebf2ae2fa346288d4dea7300b1835a |
source | Access via ProQuest (Open Access) |
subjects | Algorithms Convergence Global positioning systems GPS multiple roots Neighborhoods Nonlinear equations optimal iterative methods order of convergence scalar equations Weighting functions |
title | Efficient Three-Step Class of Eighth-Order Multiple Root Solvers and Their Dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A10%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Three-Step%20Class%20of%20Eighth-Order%20Multiple%20Root%20Solvers%20and%20Their%20Dynamics&rft.jtitle=Symmetry%20(Basel)&rft.au=Alharbey,%20R.%20A.&rft.date=2019-07-01&rft.volume=11&rft.issue=7&rft.spage=837&rft.pages=837-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym11070837&rft_dat=%3Cproquest_doaj_%3E2550259205%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-97f3403d8fedabe86017ba6a7aaec56484fbdadce22addb5d2164e98f5e270a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550259205&rft_id=info:pmid/&rfr_iscdi=true |