Loading…
Fabrication of Fe-based metallic glass reinforced FeCoNiCrMn high-entropy alloy through additive manufacturing: mechanical property enhancement and corrosion resistance improvement
In recent years, high entropy alloys (HEA) receive extensive attention for their excellent mechanical performance. In this paper, the FeCoNiCrMn high-entropy alloy reinforced material is produced by laser powder bed fusion (LPBF). The excellent tensile performance can be achieved through many streng...
Saved in:
Published in: | Journal of materials research and technology 2022-01, Vol.16, p.899-911 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3255-f75dee6bfca51ad887697df74af9f0f13c741918b66e07660b53a3b5ca7405e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c3255-f75dee6bfca51ad887697df74af9f0f13c741918b66e07660b53a3b5ca7405e83 |
container_end_page | 911 |
container_issue | |
container_start_page | 899 |
container_title | Journal of materials research and technology |
container_volume | 16 |
creator | Ma, Zhenghang Zhai, Qiang Wang, Kunlun Chen, Guoxia Yin, Xiaotian Zhang, Qingxia Meng, Lingtao Wang, Shenghai Wang, Li |
description | In recent years, high entropy alloys (HEA) receive extensive attention for their excellent mechanical performance. In this paper, the FeCoNiCrMn high-entropy alloy reinforced material is produced by laser powder bed fusion (LPBF). The excellent tensile performance can be achieved through many strengthening mechanisms, e.g., solution strengthening, dislocation strengthening, fine-grain refinement, and dispersion strengthening. The reinforced material with additive Fe-based metallic glass shows a yield strength of 675 MPa, 29.8% higher than FeCoNiCrMn (520 MPa), and an average hardness of 241.9 HV, 12.7% higher than FeCoNiCrMn (214.6 HV). Meanwhile, the plasticity of the reinforced material is maintained at a good level. In comparison with FeCoNiCrMn, the corrosion current density is reduced by 18.9%, and the corrosion resistance is significantly improved. The high strength and corrosion resistance are achieved by the addition of Fe-based metallic glass, which provides a feasible approach for the preparation of HEA with enhanced mechanical properties in the future. |
doi_str_mv | 10.1016/j.jmrt.2021.12.045 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2cec994ce9b84651ba41b73195c6133c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2238785421014885</els_id><doaj_id>oai_doaj_org_article_2cec994ce9b84651ba41b73195c6133c</doaj_id><sourcerecordid>S2238785421014885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3255-f75dee6bfca51ad887697df74af9f0f13c741918b66e07660b53a3b5ca7405e83</originalsourceid><addsrcrecordid>eNp9kUGO1DAQRbMAidEwF2DlCyTYSewkiA1q0TDSwGyGtVWplBNHSdyy3S31vTggzjRiycpS1f_PVfWz7IPgheBCfZyLefWxKHkpClEWvJZvsruyrNq8aWX9LnsIYeacC9kp3oq77PcRem8RonUbc4YdKe8h0MBWirAsFtm4QAjMk92M85g6Rzq4n_bgf2xssuOU0xa9O11Zkrsri5N353FiMAw22guxFbazAYxnb7fxU-LiBFv6cWGnZCMfr4y2VEJaE4nBNjB03ruwT-Qp2BD3JrNr0l9eRe-ztwaWQA9_3_vs1_Hry-F7_vT87fHw5SnHqpQyN40ciFRvEKSAoW0b1TWDaWowneFGVNjUohNtrxTxRineywqqXiI0NZfUVvfZ4407OJj1ydsV_FU7sPq14PyowUeLC-kSCbuuRur6tlZS9FCLvqlEJ1GJqsLEKm8sTKsFT-YfT3C9R6dnvUen9-i0KHWKLpk-30yUtrxY8jqgpXSNwXrCmMaw_7P_Ad5XqcU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fabrication of Fe-based metallic glass reinforced FeCoNiCrMn high-entropy alloy through additive manufacturing: mechanical property enhancement and corrosion resistance improvement</title><source>Free Full-Text Journals in Chemistry</source><creator>Ma, Zhenghang ; Zhai, Qiang ; Wang, Kunlun ; Chen, Guoxia ; Yin, Xiaotian ; Zhang, Qingxia ; Meng, Lingtao ; Wang, Shenghai ; Wang, Li</creator><creatorcontrib>Ma, Zhenghang ; Zhai, Qiang ; Wang, Kunlun ; Chen, Guoxia ; Yin, Xiaotian ; Zhang, Qingxia ; Meng, Lingtao ; Wang, Shenghai ; Wang, Li</creatorcontrib><description>In recent years, high entropy alloys (HEA) receive extensive attention for their excellent mechanical performance. In this paper, the FeCoNiCrMn high-entropy alloy reinforced material is produced by laser powder bed fusion (LPBF). The excellent tensile performance can be achieved through many strengthening mechanisms, e.g., solution strengthening, dislocation strengthening, fine-grain refinement, and dispersion strengthening. The reinforced material with additive Fe-based metallic glass shows a yield strength of 675 MPa, 29.8% higher than FeCoNiCrMn (520 MPa), and an average hardness of 241.9 HV, 12.7% higher than FeCoNiCrMn (214.6 HV). Meanwhile, the plasticity of the reinforced material is maintained at a good level. In comparison with FeCoNiCrMn, the corrosion current density is reduced by 18.9%, and the corrosion resistance is significantly improved. The high strength and corrosion resistance are achieved by the addition of Fe-based metallic glass, which provides a feasible approach for the preparation of HEA with enhanced mechanical properties in the future.</description><identifier>ISSN: 2238-7854</identifier><identifier>DOI: 10.1016/j.jmrt.2021.12.045</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Additive manufacturing ; High-entropy alloy ; Metallic glass ; Strengthening mechanism</subject><ispartof>Journal of materials research and technology, 2022-01, Vol.16, p.899-911</ispartof><rights>2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3255-f75dee6bfca51ad887697df74af9f0f13c741918b66e07660b53a3b5ca7405e83</citedby><cites>FETCH-LOGICAL-c3255-f75dee6bfca51ad887697df74af9f0f13c741918b66e07660b53a3b5ca7405e83</cites><orcidid>0000-0002-6539-4317</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ma, Zhenghang</creatorcontrib><creatorcontrib>Zhai, Qiang</creatorcontrib><creatorcontrib>Wang, Kunlun</creatorcontrib><creatorcontrib>Chen, Guoxia</creatorcontrib><creatorcontrib>Yin, Xiaotian</creatorcontrib><creatorcontrib>Zhang, Qingxia</creatorcontrib><creatorcontrib>Meng, Lingtao</creatorcontrib><creatorcontrib>Wang, Shenghai</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><title>Fabrication of Fe-based metallic glass reinforced FeCoNiCrMn high-entropy alloy through additive manufacturing: mechanical property enhancement and corrosion resistance improvement</title><title>Journal of materials research and technology</title><description>In recent years, high entropy alloys (HEA) receive extensive attention for their excellent mechanical performance. In this paper, the FeCoNiCrMn high-entropy alloy reinforced material is produced by laser powder bed fusion (LPBF). The excellent tensile performance can be achieved through many strengthening mechanisms, e.g., solution strengthening, dislocation strengthening, fine-grain refinement, and dispersion strengthening. The reinforced material with additive Fe-based metallic glass shows a yield strength of 675 MPa, 29.8% higher than FeCoNiCrMn (520 MPa), and an average hardness of 241.9 HV, 12.7% higher than FeCoNiCrMn (214.6 HV). Meanwhile, the plasticity of the reinforced material is maintained at a good level. In comparison with FeCoNiCrMn, the corrosion current density is reduced by 18.9%, and the corrosion resistance is significantly improved. The high strength and corrosion resistance are achieved by the addition of Fe-based metallic glass, which provides a feasible approach for the preparation of HEA with enhanced mechanical properties in the future.</description><subject>Additive manufacturing</subject><subject>High-entropy alloy</subject><subject>Metallic glass</subject><subject>Strengthening mechanism</subject><issn>2238-7854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUGO1DAQRbMAidEwF2DlCyTYSewkiA1q0TDSwGyGtVWplBNHSdyy3S31vTggzjRiycpS1f_PVfWz7IPgheBCfZyLefWxKHkpClEWvJZvsruyrNq8aWX9LnsIYeacC9kp3oq77PcRem8RonUbc4YdKe8h0MBWirAsFtm4QAjMk92M85g6Rzq4n_bgf2xssuOU0xa9O11Zkrsri5N353FiMAw22guxFbazAYxnb7fxU-LiBFv6cWGnZCMfr4y2VEJaE4nBNjB03ruwT-Qp2BD3JrNr0l9eRe-ztwaWQA9_3_vs1_Hry-F7_vT87fHw5SnHqpQyN40ciFRvEKSAoW0b1TWDaWowneFGVNjUohNtrxTxRineywqqXiI0NZfUVvfZ4407OJj1ydsV_FU7sPq14PyowUeLC-kSCbuuRur6tlZS9FCLvqlEJ1GJqsLEKm8sTKsFT-YfT3C9R6dnvUen9-i0KHWKLpk-30yUtrxY8jqgpXSNwXrCmMaw_7P_Ad5XqcU</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Ma, Zhenghang</creator><creator>Zhai, Qiang</creator><creator>Wang, Kunlun</creator><creator>Chen, Guoxia</creator><creator>Yin, Xiaotian</creator><creator>Zhang, Qingxia</creator><creator>Meng, Lingtao</creator><creator>Wang, Shenghai</creator><creator>Wang, Li</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6539-4317</orcidid></search><sort><creationdate>202201</creationdate><title>Fabrication of Fe-based metallic glass reinforced FeCoNiCrMn high-entropy alloy through additive manufacturing: mechanical property enhancement and corrosion resistance improvement</title><author>Ma, Zhenghang ; Zhai, Qiang ; Wang, Kunlun ; Chen, Guoxia ; Yin, Xiaotian ; Zhang, Qingxia ; Meng, Lingtao ; Wang, Shenghai ; Wang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3255-f75dee6bfca51ad887697df74af9f0f13c741918b66e07660b53a3b5ca7405e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>High-entropy alloy</topic><topic>Metallic glass</topic><topic>Strengthening mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhenghang</creatorcontrib><creatorcontrib>Zhai, Qiang</creatorcontrib><creatorcontrib>Wang, Kunlun</creatorcontrib><creatorcontrib>Chen, Guoxia</creatorcontrib><creatorcontrib>Yin, Xiaotian</creatorcontrib><creatorcontrib>Zhang, Qingxia</creatorcontrib><creatorcontrib>Meng, Lingtao</creatorcontrib><creatorcontrib>Wang, Shenghai</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of materials research and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhenghang</au><au>Zhai, Qiang</au><au>Wang, Kunlun</au><au>Chen, Guoxia</au><au>Yin, Xiaotian</au><au>Zhang, Qingxia</au><au>Meng, Lingtao</au><au>Wang, Shenghai</au><au>Wang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Fe-based metallic glass reinforced FeCoNiCrMn high-entropy alloy through additive manufacturing: mechanical property enhancement and corrosion resistance improvement</atitle><jtitle>Journal of materials research and technology</jtitle><date>2022-01</date><risdate>2022</risdate><volume>16</volume><spage>899</spage><epage>911</epage><pages>899-911</pages><issn>2238-7854</issn><abstract>In recent years, high entropy alloys (HEA) receive extensive attention for their excellent mechanical performance. In this paper, the FeCoNiCrMn high-entropy alloy reinforced material is produced by laser powder bed fusion (LPBF). The excellent tensile performance can be achieved through many strengthening mechanisms, e.g., solution strengthening, dislocation strengthening, fine-grain refinement, and dispersion strengthening. The reinforced material with additive Fe-based metallic glass shows a yield strength of 675 MPa, 29.8% higher than FeCoNiCrMn (520 MPa), and an average hardness of 241.9 HV, 12.7% higher than FeCoNiCrMn (214.6 HV). Meanwhile, the plasticity of the reinforced material is maintained at a good level. In comparison with FeCoNiCrMn, the corrosion current density is reduced by 18.9%, and the corrosion resistance is significantly improved. The high strength and corrosion resistance are achieved by the addition of Fe-based metallic glass, which provides a feasible approach for the preparation of HEA with enhanced mechanical properties in the future.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmrt.2021.12.045</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6539-4317</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-7854 |
ispartof | Journal of materials research and technology, 2022-01, Vol.16, p.899-911 |
issn | 2238-7854 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2cec994ce9b84651ba41b73195c6133c |
source | Free Full-Text Journals in Chemistry |
subjects | Additive manufacturing High-entropy alloy Metallic glass Strengthening mechanism |
title | Fabrication of Fe-based metallic glass reinforced FeCoNiCrMn high-entropy alloy through additive manufacturing: mechanical property enhancement and corrosion resistance improvement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Fe-based%20metallic%20glass%20reinforced%20FeCoNiCrMn%20high-entropy%20alloy%20through%20additive%20manufacturing:%20mechanical%20property%20enhancement%20and%20corrosion%20resistance%20improvement&rft.jtitle=Journal%20of%20materials%20research%20and%20technology&rft.au=Ma,%20Zhenghang&rft.date=2022-01&rft.volume=16&rft.spage=899&rft.epage=911&rft.pages=899-911&rft.issn=2238-7854&rft_id=info:doi/10.1016/j.jmrt.2021.12.045&rft_dat=%3Celsevier_doaj_%3ES2238785421014885%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3255-f75dee6bfca51ad887697df74af9f0f13c741918b66e07660b53a3b5ca7405e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |