Loading…

Deuterated Glutamate-Mediated Neuronal Activity on Micro-Electrode Arrays

The excitatory synaptic transmission is mediated by glutamate in neuronal networks of the mammalian brain. In addition to the synaptic glutamate, extra-synaptic glutamate is known to modulate the neuronal activity. In neuronal networks, glutamate uptake is an important role of neurons and glial cell...

Full description

Saved in:
Bibliographic Details
Published in:Micromachines (Basel) 2020-08, Vol.11 (9), p.830
Main Authors: Minoshima, Wataru, Masui, Kyoko, Tani, Tomomi, Nawa, Yasunori, Fujita, Satoshi, Ishitobi, Hidekazu, Hosokawa, Chie, Inouye, Yasushi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The excitatory synaptic transmission is mediated by glutamate in neuronal networks of the mammalian brain. In addition to the synaptic glutamate, extra-synaptic glutamate is known to modulate the neuronal activity. In neuronal networks, glutamate uptake is an important role of neurons and glial cells for lowering the concentration of extracellular glutamate and to avoid the excitotoxicity by glutamate. Monitoring the spatial distribution of intracellular glutamate is important to study the uptake of glutamate, but the approach has been hampered by the absence of appropriate glutamate analogs that report the localization of glutamate. Deuterium-labeled glutamate (GLU-D) is a promising tracer for monitoring the intracellular concentration of glutamate, but physiological properties of GLU-D have not been studied. Here we study the effects of extracellular GLU-D for the neuronal activity by using primary cultured rat hippocampal neurons that form neuronal networks on microelectrodes array. The frequency of firing in the spontaneous activity of neurons increased with the increasing concentration of extracellular GLU-D. The frequency of synchronized burst activity in neurons increased similarly as we observed in the spontaneous activity. These changes of the neuronal activity with extracellular GLU-D were suppressed by antagonists of glutamate receptors. These results suggest that GLU-D can be used as an analog of glutamate with equivalent effects for facilitating the neuronal activity. We anticipate GLU-D developing as a promising analog of glutamate for studying the dynamics of glutamate during neuronal activity.
ISSN:2072-666X
2072-666X
DOI:10.3390/mi11090830