Loading…

Efficient Decoupling of a Nonlinear Qubit Mode from Its Environment

To control and measure the state of a quantum system, it must necessarily be coupled to external degrees of freedom. This inevitably leads to spontaneous emission via the Purcell effect, photon-induced dephasing from measurement backaction, and errors caused by unwanted interactions with nearby quan...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2024-10, Vol.14 (4), p.041007
Main Authors: F. Pfeiffer, M. Werninghaus, C. Schweizer, N. Bruckmoser, L. Koch, N. J. Glaser, G. B. P. Huber, D. Bunch, F. X. Haslbeck, M. Knudsen, G. Krylov, K. Liegener, A. Marx, L. Richard, J. H. Romeiro, F. A. Roy, J. Schirk, C. Schneider, M. Singh, L. Södergren, I. Tsitsilin, F. Wallner, C. A. Riofrío, S. Filipp
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 4
container_start_page 041007
container_title Physical review. X
container_volume 14
creator F. Pfeiffer
M. Werninghaus
C. Schweizer
N. Bruckmoser
L. Koch
N. J. Glaser
G. B. P. Huber
D. Bunch
F. X. Haslbeck
M. Knudsen
G. Krylov
K. Liegener
A. Marx
L. Richard
J. H. Romeiro
F. A. Roy
J. Schirk
C. Schneider
M. Singh
L. Södergren
I. Tsitsilin
F. Wallner
C. A. Riofrío
S. Filipp
description To control and measure the state of a quantum system, it must necessarily be coupled to external degrees of freedom. This inevitably leads to spontaneous emission via the Purcell effect, photon-induced dephasing from measurement backaction, and errors caused by unwanted interactions with nearby quantum systems. To tackle this fundamental challenge, we make use of the design flexibility of superconducting quantum circuits to form a multimode element—an artificial molecule—with symmetry-protected modes. The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions. It exhibits two essential nonlinear modes, one of which is flux insensitive and used as the protected qubit mode. The second mode is flux tunable and serves via a cross-Kerr-type coupling as a mediator to control the dispersive coupling of the qubit mode to the readout resonator. We demonstrate the Purcell protection of the qubit mode by measuring relaxation times that are independent of the mediated dispersive coupling. We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator and thereby reducing the dispersive coupling. The resulting highly protected qubit, which we refer to as P-mon, with tunable interactions may serve as a basic building block of a scalable quantum processor architecture, in which qubit decoherence is strongly suppressed.
doi_str_mv 10.1103/PhysRevX.14.041007
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2d4ec6e144954a4682b7692814f1f2bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2d4ec6e144954a4682b7692814f1f2bd</doaj_id><sourcerecordid>oai_doaj_org_article_2d4ec6e144954a4682b7692814f1f2bd</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_2d4ec6e144954a4682b7692814f1f2bd3</originalsourceid><addsrcrecordid>eNqtjEFOwzAQRS0kJCroBVj5Ag0eZ3DSdQmiC1BBLNhZTjIurhJPZaeVensixBH4m6_3pfeFuAdVAKjyYfd9yR90_ioAC4WgVHUlFhqMWpWlqm_EMueDmmMUYFUtxKbxPnSB4iSfqOPTcQhxL9lLJ984zkAuyfdTGyb5yj1Jn3iU2ynLJp5D4jjO5p249m7ItPzrW7F9bj43L6ue3cEeUxhdulh2wf4OnPbWpSl0A1ndI3WGAHH9iA5NrdvKrHUN6MHrti__8-sHnSlZyA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Efficient Decoupling of a Nonlinear Qubit Mode from Its Environment</title><source>Publicly Available Content Database</source><creator>F. Pfeiffer ; M. Werninghaus ; C. Schweizer ; N. Bruckmoser ; L. Koch ; N. J. Glaser ; G. B. P. Huber ; D. Bunch ; F. X. Haslbeck ; M. Knudsen ; G. Krylov ; K. Liegener ; A. Marx ; L. Richard ; J. H. Romeiro ; F. A. Roy ; J. Schirk ; C. Schneider ; M. Singh ; L. Södergren ; I. Tsitsilin ; F. Wallner ; C. A. Riofrío ; S. Filipp</creator><creatorcontrib>F. Pfeiffer ; M. Werninghaus ; C. Schweizer ; N. Bruckmoser ; L. Koch ; N. J. Glaser ; G. B. P. Huber ; D. Bunch ; F. X. Haslbeck ; M. Knudsen ; G. Krylov ; K. Liegener ; A. Marx ; L. Richard ; J. H. Romeiro ; F. A. Roy ; J. Schirk ; C. Schneider ; M. Singh ; L. Södergren ; I. Tsitsilin ; F. Wallner ; C. A. Riofrío ; S. Filipp</creatorcontrib><description>To control and measure the state of a quantum system, it must necessarily be coupled to external degrees of freedom. This inevitably leads to spontaneous emission via the Purcell effect, photon-induced dephasing from measurement backaction, and errors caused by unwanted interactions with nearby quantum systems. To tackle this fundamental challenge, we make use of the design flexibility of superconducting quantum circuits to form a multimode element—an artificial molecule—with symmetry-protected modes. The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions. It exhibits two essential nonlinear modes, one of which is flux insensitive and used as the protected qubit mode. The second mode is flux tunable and serves via a cross-Kerr-type coupling as a mediator to control the dispersive coupling of the qubit mode to the readout resonator. We demonstrate the Purcell protection of the qubit mode by measuring relaxation times that are independent of the mediated dispersive coupling. We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator and thereby reducing the dispersive coupling. The resulting highly protected qubit, which we refer to as P-mon, with tunable interactions may serve as a basic building block of a scalable quantum processor architecture, in which qubit decoherence is strongly suppressed.</description><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.14.041007</identifier><language>eng</language><publisher>American Physical Society</publisher><ispartof>Physical review. X, 2024-10, Vol.14 (4), p.041007</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>F. Pfeiffer</creatorcontrib><creatorcontrib>M. Werninghaus</creatorcontrib><creatorcontrib>C. Schweizer</creatorcontrib><creatorcontrib>N. Bruckmoser</creatorcontrib><creatorcontrib>L. Koch</creatorcontrib><creatorcontrib>N. J. Glaser</creatorcontrib><creatorcontrib>G. B. P. Huber</creatorcontrib><creatorcontrib>D. Bunch</creatorcontrib><creatorcontrib>F. X. Haslbeck</creatorcontrib><creatorcontrib>M. Knudsen</creatorcontrib><creatorcontrib>G. Krylov</creatorcontrib><creatorcontrib>K. Liegener</creatorcontrib><creatorcontrib>A. Marx</creatorcontrib><creatorcontrib>L. Richard</creatorcontrib><creatorcontrib>J. H. Romeiro</creatorcontrib><creatorcontrib>F. A. Roy</creatorcontrib><creatorcontrib>J. Schirk</creatorcontrib><creatorcontrib>C. Schneider</creatorcontrib><creatorcontrib>M. Singh</creatorcontrib><creatorcontrib>L. Södergren</creatorcontrib><creatorcontrib>I. Tsitsilin</creatorcontrib><creatorcontrib>F. Wallner</creatorcontrib><creatorcontrib>C. A. Riofrío</creatorcontrib><creatorcontrib>S. Filipp</creatorcontrib><title>Efficient Decoupling of a Nonlinear Qubit Mode from Its Environment</title><title>Physical review. X</title><description>To control and measure the state of a quantum system, it must necessarily be coupled to external degrees of freedom. This inevitably leads to spontaneous emission via the Purcell effect, photon-induced dephasing from measurement backaction, and errors caused by unwanted interactions with nearby quantum systems. To tackle this fundamental challenge, we make use of the design flexibility of superconducting quantum circuits to form a multimode element—an artificial molecule—with symmetry-protected modes. The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions. It exhibits two essential nonlinear modes, one of which is flux insensitive and used as the protected qubit mode. The second mode is flux tunable and serves via a cross-Kerr-type coupling as a mediator to control the dispersive coupling of the qubit mode to the readout resonator. We demonstrate the Purcell protection of the qubit mode by measuring relaxation times that are independent of the mediated dispersive coupling. We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator and thereby reducing the dispersive coupling. The resulting highly protected qubit, which we refer to as P-mon, with tunable interactions may serve as a basic building block of a scalable quantum processor architecture, in which qubit decoherence is strongly suppressed.</description><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjEFOwzAQRS0kJCroBVj5Ag0eZ3DSdQmiC1BBLNhZTjIurhJPZaeVensixBH4m6_3pfeFuAdVAKjyYfd9yR90_ioAC4WgVHUlFhqMWpWlqm_EMueDmmMUYFUtxKbxPnSB4iSfqOPTcQhxL9lLJ984zkAuyfdTGyb5yj1Jn3iU2ynLJp5D4jjO5p249m7ItPzrW7F9bj43L6ue3cEeUxhdulh2wf4OnPbWpSl0A1ndI3WGAHH9iA5NrdvKrHUN6MHrti__8-sHnSlZyA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>F. Pfeiffer</creator><creator>M. Werninghaus</creator><creator>C. Schweizer</creator><creator>N. Bruckmoser</creator><creator>L. Koch</creator><creator>N. J. Glaser</creator><creator>G. B. P. Huber</creator><creator>D. Bunch</creator><creator>F. X. Haslbeck</creator><creator>M. Knudsen</creator><creator>G. Krylov</creator><creator>K. Liegener</creator><creator>A. Marx</creator><creator>L. Richard</creator><creator>J. H. Romeiro</creator><creator>F. A. Roy</creator><creator>J. Schirk</creator><creator>C. Schneider</creator><creator>M. Singh</creator><creator>L. Södergren</creator><creator>I. Tsitsilin</creator><creator>F. Wallner</creator><creator>C. A. Riofrío</creator><creator>S. Filipp</creator><general>American Physical Society</general><scope>DOA</scope></search><sort><creationdate>20241001</creationdate><title>Efficient Decoupling of a Nonlinear Qubit Mode from Its Environment</title><author>F. Pfeiffer ; M. Werninghaus ; C. Schweizer ; N. Bruckmoser ; L. Koch ; N. J. Glaser ; G. B. P. Huber ; D. Bunch ; F. X. Haslbeck ; M. Knudsen ; G. Krylov ; K. Liegener ; A. Marx ; L. Richard ; J. H. Romeiro ; F. A. Roy ; J. Schirk ; C. Schneider ; M. Singh ; L. Södergren ; I. Tsitsilin ; F. Wallner ; C. A. Riofrío ; S. Filipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_2d4ec6e144954a4682b7692814f1f2bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>F. Pfeiffer</creatorcontrib><creatorcontrib>M. Werninghaus</creatorcontrib><creatorcontrib>C. Schweizer</creatorcontrib><creatorcontrib>N. Bruckmoser</creatorcontrib><creatorcontrib>L. Koch</creatorcontrib><creatorcontrib>N. J. Glaser</creatorcontrib><creatorcontrib>G. B. P. Huber</creatorcontrib><creatorcontrib>D. Bunch</creatorcontrib><creatorcontrib>F. X. Haslbeck</creatorcontrib><creatorcontrib>M. Knudsen</creatorcontrib><creatorcontrib>G. Krylov</creatorcontrib><creatorcontrib>K. Liegener</creatorcontrib><creatorcontrib>A. Marx</creatorcontrib><creatorcontrib>L. Richard</creatorcontrib><creatorcontrib>J. H. Romeiro</creatorcontrib><creatorcontrib>F. A. Roy</creatorcontrib><creatorcontrib>J. Schirk</creatorcontrib><creatorcontrib>C. Schneider</creatorcontrib><creatorcontrib>M. Singh</creatorcontrib><creatorcontrib>L. Södergren</creatorcontrib><creatorcontrib>I. Tsitsilin</creatorcontrib><creatorcontrib>F. Wallner</creatorcontrib><creatorcontrib>C. A. Riofrío</creatorcontrib><creatorcontrib>S. Filipp</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>F. Pfeiffer</au><au>M. Werninghaus</au><au>C. Schweizer</au><au>N. Bruckmoser</au><au>L. Koch</au><au>N. J. Glaser</au><au>G. B. P. Huber</au><au>D. Bunch</au><au>F. X. Haslbeck</au><au>M. Knudsen</au><au>G. Krylov</au><au>K. Liegener</au><au>A. Marx</au><au>L. Richard</au><au>J. H. Romeiro</au><au>F. A. Roy</au><au>J. Schirk</au><au>C. Schneider</au><au>M. Singh</au><au>L. Södergren</au><au>I. Tsitsilin</au><au>F. Wallner</au><au>C. A. Riofrío</au><au>S. Filipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Decoupling of a Nonlinear Qubit Mode from Its Environment</atitle><jtitle>Physical review. X</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>4</issue><spage>041007</spage><pages>041007-</pages><eissn>2160-3308</eissn><abstract>To control and measure the state of a quantum system, it must necessarily be coupled to external degrees of freedom. This inevitably leads to spontaneous emission via the Purcell effect, photon-induced dephasing from measurement backaction, and errors caused by unwanted interactions with nearby quantum systems. To tackle this fundamental challenge, we make use of the design flexibility of superconducting quantum circuits to form a multimode element—an artificial molecule—with symmetry-protected modes. The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions. It exhibits two essential nonlinear modes, one of which is flux insensitive and used as the protected qubit mode. The second mode is flux tunable and serves via a cross-Kerr-type coupling as a mediator to control the dispersive coupling of the qubit mode to the readout resonator. We demonstrate the Purcell protection of the qubit mode by measuring relaxation times that are independent of the mediated dispersive coupling. We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator and thereby reducing the dispersive coupling. The resulting highly protected qubit, which we refer to as P-mon, with tunable interactions may serve as a basic building block of a scalable quantum processor architecture, in which qubit decoherence is strongly suppressed.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevX.14.041007</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2160-3308
ispartof Physical review. X, 2024-10, Vol.14 (4), p.041007
issn 2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2d4ec6e144954a4682b7692814f1f2bd
source Publicly Available Content Database
title Efficient Decoupling of a Nonlinear Qubit Mode from Its Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Decoupling%20of%20a%20Nonlinear%20Qubit%20Mode%20from%20Its%20Environment&rft.jtitle=Physical%20review.%20X&rft.au=F.%20Pfeiffer&rft.date=2024-10-01&rft.volume=14&rft.issue=4&rft.spage=041007&rft.pages=041007-&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.14.041007&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_2d4ec6e144954a4682b7692814f1f2bd%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_2d4ec6e144954a4682b7692814f1f2bd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true