Loading…
A Pig Mass Estimation Model Based on Deep Learning without Constraint
The body mass of pigs is an essential indicator of their growth and health. Lately, contactless pig body mass estimation methods based on computer vision technology have gained attention thanks to their potential to improve animal welfare and ensure breeders' safety. Nonetheless, current method...
Saved in:
Published in: | Animals (Basel) 2023-04, Vol.13 (8), p.1376 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The body mass of pigs is an essential indicator of their growth and health. Lately, contactless pig body mass estimation methods based on computer vision technology have gained attention thanks to their potential to improve animal welfare and ensure breeders' safety. Nonetheless, current methods require pigs to be restrained in a confinement pen, and no study has been conducted in an unconstrained environment. In this study, we develop a pig mass estimation model based on deep learning, capable of estimating body mass without constraints. Our model comprises a Mask R-CNN-based pig instance segmentation algorithm, a Keypoint R-CNN-based pig keypoint detection algorithm and an improved ResNet-based pig mass estimation algorithm that includes multi-branch convolution, depthwise convolution, and an inverted bottleneck to improve accuracy. We constructed a dataset for this study using images and body mass data from 117 pigs. Our model achieved an RMSE of 3.52 kg on the test set, which is lower than that of the pig body mass estimation algorithm with ResNet and ConvNeXt as the backbone network, and the average estimation speed was 0.339 s·frame
Our model can evaluate the body quality of pigs in real-time to provide data support for grading and adjusting breeding plans, and has broad application prospects. |
---|---|
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani13081376 |