Loading…
Radiative impact of an extreme Arctic biomass-burning event
The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer...
Saved in:
Published in: | Atmospheric chemistry and physics 2018-06, Vol.18 (12), p.8829-8848 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73 |
container_end_page | 8848 |
container_issue | 12 |
container_start_page | 8829 |
container_title | Atmospheric chemistry and physics |
container_volume | 18 |
creator | Lisok, Justyna Rozwadowska, Anna Pedersen, Jesper G Markowicz, Krzysztof M Ritter, Christoph Kaminski, Jacek W Struzewska, Joanna Mazzola, Mauro Udisti, Roberto Becagli, Silvia Gorecka, Izabela |
description | The aim of the presented study was to investigate the impact on the radiation
budget of a biomass-burning plume, transported from Alaska to the High Arctic
region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean
aerosol optical depth increased by the factor of 10 above the average summer
background values, this large aerosol load event is considered particularly
exceptional in the last 25 years. In situ data with hygroscopic growth
equations, as well as remote sensing measurements as inputs to radiative
transfer models, were used, in order to estimate biases associated with
(i) hygroscopicity, (ii) variability of single-scattering albedo profiles,
and (iii) plane-parallel closure of the modelled atmosphere. A chemical
weather model with satellite-derived biomass-burning emissions was applied to
interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event
(14:00 9 July–11:30 11 July) resulted in a mean aerosol
direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at
the surface and at the top of the atmosphere, respectively,
for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This
corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface.
Ultimately, uncertainty associated with the plane-parallel atmosphere
approximation altered results by about 2 W m−2. Furthermore,
model-derived aerosol direct radiative forcing efficiency reached on average
−126 W m-2/τ550 and −71 W m-2/τ550 at the
surface and at the top of the atmosphere, respectively. The heating rate, estimated at up
to 1.8 K day−1 inside the biomass-burning plume, implied vertical
mixing with turbulent kinetic energy of 0.3 m2 s−2. |
doi_str_mv | 10.5194/acp-18-8829-2018 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2d6fa6f45a534d6e922d002227cb4186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543964784</galeid><doaj_id>oai_doaj_org_article_2d6fa6f45a534d6e922d002227cb4186</doaj_id><sourcerecordid>A543964784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73</originalsourceid><addsrcrecordid>eNptkctrGzEQxpfSQNMk9x4XeuphE43eoicT-jAECmlzFrN6GJnsypXWof3vK9clraHoMGL4zTePr-veALkWYPgNut0AetCamoES0C-6c5CaDIpR_vKf_6vuda1bQqggwM-79_foEy7pKfRp2qFb-hx7nPvwYylhCv2quCW5fkx5wlqHcV_mNG_68BTm5bI7i_hYw9WfeNE9fPzw7fbzcPfl0_p2dTc4weUyaAARDFISR-oNAIFAPCHKBDBqlOgk85pp5giLQkUKZqQ0UmeE0EJ5xS669VHXZ9zaXUkTlp82Y7K_E7lsLJY25WOw1MuIMnKBgnEvg6G0taKUKjdy0LJpvT1q7Ur-vg91sdvcdmrjWwpKSs4MqL_UBptommNeCropVWdXoiGSK80bdf0fqj0fpuTyHGJq-ZOCdycFjVnaoTe4r9Wuv96fsuTIupJrLSE-Lw7EHhy3zXEL2h4ctwfH2S9OxZmm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176643917</pqid></control><display><type>article</type><title>Radiative impact of an extreme Arctic biomass-burning event</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Lisok, Justyna ; Rozwadowska, Anna ; Pedersen, Jesper G ; Markowicz, Krzysztof M ; Ritter, Christoph ; Kaminski, Jacek W ; Struzewska, Joanna ; Mazzola, Mauro ; Udisti, Roberto ; Becagli, Silvia ; Gorecka, Izabela</creator><creatorcontrib>Lisok, Justyna ; Rozwadowska, Anna ; Pedersen, Jesper G ; Markowicz, Krzysztof M ; Ritter, Christoph ; Kaminski, Jacek W ; Struzewska, Joanna ; Mazzola, Mauro ; Udisti, Roberto ; Becagli, Silvia ; Gorecka, Izabela</creatorcontrib><description>The aim of the presented study was to investigate the impact on the radiation
budget of a biomass-burning plume, transported from Alaska to the High Arctic
region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean
aerosol optical depth increased by the factor of 10 above the average summer
background values, this large aerosol load event is considered particularly
exceptional in the last 25 years. In situ data with hygroscopic growth
equations, as well as remote sensing measurements as inputs to radiative
transfer models, were used, in order to estimate biases associated with
(i) hygroscopicity, (ii) variability of single-scattering albedo profiles,
and (iii) plane-parallel closure of the modelled atmosphere. A chemical
weather model with satellite-derived biomass-burning emissions was applied to
interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event
(14:00 9 July–11:30 11 July) resulted in a mean aerosol
direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at
the surface and at the top of the atmosphere, respectively,
for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This
corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface.
Ultimately, uncertainty associated with the plane-parallel atmosphere
approximation altered results by about 2 W m−2. Furthermore,
model-derived aerosol direct radiative forcing efficiency reached on average
−126 W m-2/τ550 and −71 W m-2/τ550 at the
surface and at the top of the atmosphere, respectively. The heating rate, estimated at up
to 1.8 K day−1 inside the biomass-burning plume, implied vertical
mixing with turbulent kinetic energy of 0.3 m2 s−2.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-18-8829-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerodynamics ; Aerosol optical depth ; Aerosols ; Albedo ; Albedo (solar) ; Approximation ; Arctic zone ; Atmosphere ; Atmospheric models ; Atmospheric radiation ; Biomass ; Biomass burning ; Biomass burning plumes ; Burning ; Chemical properties ; Combustion ; Computer simulation ; Environmental aspects ; Environmental impact analysis ; Genetic transformation ; Heating ; Heating rate ; Hygroscopicity ; Kinetic energy ; Meteorological satellites ; Methods ; Optical analysis ; Organic chemistry ; Profiles ; Radiation ; Radiation budget ; Radiative forcing ; Radiative transfer ; Radiative transfer models ; Radiometers ; Remote sensing ; Satellites ; Sky ; Smoke ; Turbulent kinetic energy ; Vertical mixing</subject><ispartof>Atmospheric chemistry and physics, 2018-06, Vol.18 (12), p.8829-8848</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73</citedby><cites>FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73</cites><orcidid>0000-0003-4190-0243 ; 0000-0003-3633-4849 ; 0000-0002-8394-2292 ; 0000-0003-3538-0122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2176643917/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2176643917?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Lisok, Justyna</creatorcontrib><creatorcontrib>Rozwadowska, Anna</creatorcontrib><creatorcontrib>Pedersen, Jesper G</creatorcontrib><creatorcontrib>Markowicz, Krzysztof M</creatorcontrib><creatorcontrib>Ritter, Christoph</creatorcontrib><creatorcontrib>Kaminski, Jacek W</creatorcontrib><creatorcontrib>Struzewska, Joanna</creatorcontrib><creatorcontrib>Mazzola, Mauro</creatorcontrib><creatorcontrib>Udisti, Roberto</creatorcontrib><creatorcontrib>Becagli, Silvia</creatorcontrib><creatorcontrib>Gorecka, Izabela</creatorcontrib><title>Radiative impact of an extreme Arctic biomass-burning event</title><title>Atmospheric chemistry and physics</title><description>The aim of the presented study was to investigate the impact on the radiation
budget of a biomass-burning plume, transported from Alaska to the High Arctic
region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean
aerosol optical depth increased by the factor of 10 above the average summer
background values, this large aerosol load event is considered particularly
exceptional in the last 25 years. In situ data with hygroscopic growth
equations, as well as remote sensing measurements as inputs to radiative
transfer models, were used, in order to estimate biases associated with
(i) hygroscopicity, (ii) variability of single-scattering albedo profiles,
and (iii) plane-parallel closure of the modelled atmosphere. A chemical
weather model with satellite-derived biomass-burning emissions was applied to
interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event
(14:00 9 July–11:30 11 July) resulted in a mean aerosol
direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at
the surface and at the top of the atmosphere, respectively,
for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This
corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface.
Ultimately, uncertainty associated with the plane-parallel atmosphere
approximation altered results by about 2 W m−2. Furthermore,
model-derived aerosol direct radiative forcing efficiency reached on average
−126 W m-2/τ550 and −71 W m-2/τ550 at the
surface and at the top of the atmosphere, respectively. The heating rate, estimated at up
to 1.8 K day−1 inside the biomass-burning plume, implied vertical
mixing with turbulent kinetic energy of 0.3 m2 s−2.</description><subject>Aerodynamics</subject><subject>Aerosol optical depth</subject><subject>Aerosols</subject><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Approximation</subject><subject>Arctic zone</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Atmospheric radiation</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Biomass burning plumes</subject><subject>Burning</subject><subject>Chemical properties</subject><subject>Combustion</subject><subject>Computer simulation</subject><subject>Environmental aspects</subject><subject>Environmental impact analysis</subject><subject>Genetic transformation</subject><subject>Heating</subject><subject>Heating rate</subject><subject>Hygroscopicity</subject><subject>Kinetic energy</subject><subject>Meteorological satellites</subject><subject>Methods</subject><subject>Optical analysis</subject><subject>Organic chemistry</subject><subject>Profiles</subject><subject>Radiation</subject><subject>Radiation budget</subject><subject>Radiative forcing</subject><subject>Radiative transfer</subject><subject>Radiative transfer models</subject><subject>Radiometers</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sky</subject><subject>Smoke</subject><subject>Turbulent kinetic energy</subject><subject>Vertical mixing</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkctrGzEQxpfSQNMk9x4XeuphE43eoicT-jAECmlzFrN6GJnsypXWof3vK9clraHoMGL4zTePr-veALkWYPgNut0AetCamoES0C-6c5CaDIpR_vKf_6vuda1bQqggwM-79_foEy7pKfRp2qFb-hx7nPvwYylhCv2quCW5fkx5wlqHcV_mNG_68BTm5bI7i_hYw9WfeNE9fPzw7fbzcPfl0_p2dTc4weUyaAARDFISR-oNAIFAPCHKBDBqlOgk85pp5giLQkUKZqQ0UmeE0EJ5xS669VHXZ9zaXUkTlp82Y7K_E7lsLJY25WOw1MuIMnKBgnEvg6G0taKUKjdy0LJpvT1q7Ur-vg91sdvcdmrjWwpKSs4MqL_UBptommNeCropVWdXoiGSK80bdf0fqj0fpuTyHGJq-ZOCdycFjVnaoTe4r9Wuv96fsuTIupJrLSE-Lw7EHhy3zXEL2h4ctwfH2S9OxZmm</recordid><startdate>20180622</startdate><enddate>20180622</enddate><creator>Lisok, Justyna</creator><creator>Rozwadowska, Anna</creator><creator>Pedersen, Jesper G</creator><creator>Markowicz, Krzysztof M</creator><creator>Ritter, Christoph</creator><creator>Kaminski, Jacek W</creator><creator>Struzewska, Joanna</creator><creator>Mazzola, Mauro</creator><creator>Udisti, Roberto</creator><creator>Becagli, Silvia</creator><creator>Gorecka, Izabela</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4190-0243</orcidid><orcidid>https://orcid.org/0000-0003-3633-4849</orcidid><orcidid>https://orcid.org/0000-0002-8394-2292</orcidid><orcidid>https://orcid.org/0000-0003-3538-0122</orcidid></search><sort><creationdate>20180622</creationdate><title>Radiative impact of an extreme Arctic biomass-burning event</title><author>Lisok, Justyna ; Rozwadowska, Anna ; Pedersen, Jesper G ; Markowicz, Krzysztof M ; Ritter, Christoph ; Kaminski, Jacek W ; Struzewska, Joanna ; Mazzola, Mauro ; Udisti, Roberto ; Becagli, Silvia ; Gorecka, Izabela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Aerosol optical depth</topic><topic>Aerosols</topic><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Approximation</topic><topic>Arctic zone</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Atmospheric radiation</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Biomass burning plumes</topic><topic>Burning</topic><topic>Chemical properties</topic><topic>Combustion</topic><topic>Computer simulation</topic><topic>Environmental aspects</topic><topic>Environmental impact analysis</topic><topic>Genetic transformation</topic><topic>Heating</topic><topic>Heating rate</topic><topic>Hygroscopicity</topic><topic>Kinetic energy</topic><topic>Meteorological satellites</topic><topic>Methods</topic><topic>Optical analysis</topic><topic>Organic chemistry</topic><topic>Profiles</topic><topic>Radiation</topic><topic>Radiation budget</topic><topic>Radiative forcing</topic><topic>Radiative transfer</topic><topic>Radiative transfer models</topic><topic>Radiometers</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sky</topic><topic>Smoke</topic><topic>Turbulent kinetic energy</topic><topic>Vertical mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisok, Justyna</creatorcontrib><creatorcontrib>Rozwadowska, Anna</creatorcontrib><creatorcontrib>Pedersen, Jesper G</creatorcontrib><creatorcontrib>Markowicz, Krzysztof M</creatorcontrib><creatorcontrib>Ritter, Christoph</creatorcontrib><creatorcontrib>Kaminski, Jacek W</creatorcontrib><creatorcontrib>Struzewska, Joanna</creatorcontrib><creatorcontrib>Mazzola, Mauro</creatorcontrib><creatorcontrib>Udisti, Roberto</creatorcontrib><creatorcontrib>Becagli, Silvia</creatorcontrib><creatorcontrib>Gorecka, Izabela</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisok, Justyna</au><au>Rozwadowska, Anna</au><au>Pedersen, Jesper G</au><au>Markowicz, Krzysztof M</au><au>Ritter, Christoph</au><au>Kaminski, Jacek W</au><au>Struzewska, Joanna</au><au>Mazzola, Mauro</au><au>Udisti, Roberto</au><au>Becagli, Silvia</au><au>Gorecka, Izabela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative impact of an extreme Arctic biomass-burning event</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2018-06-22</date><risdate>2018</risdate><volume>18</volume><issue>12</issue><spage>8829</spage><epage>8848</epage><pages>8829-8848</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>The aim of the presented study was to investigate the impact on the radiation
budget of a biomass-burning plume, transported from Alaska to the High Arctic
region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean
aerosol optical depth increased by the factor of 10 above the average summer
background values, this large aerosol load event is considered particularly
exceptional in the last 25 years. In situ data with hygroscopic growth
equations, as well as remote sensing measurements as inputs to radiative
transfer models, were used, in order to estimate biases associated with
(i) hygroscopicity, (ii) variability of single-scattering albedo profiles,
and (iii) plane-parallel closure of the modelled atmosphere. A chemical
weather model with satellite-derived biomass-burning emissions was applied to
interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event
(14:00 9 July–11:30 11 July) resulted in a mean aerosol
direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at
the surface and at the top of the atmosphere, respectively,
for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This
corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface.
Ultimately, uncertainty associated with the plane-parallel atmosphere
approximation altered results by about 2 W m−2. Furthermore,
model-derived aerosol direct radiative forcing efficiency reached on average
−126 W m-2/τ550 and −71 W m-2/τ550 at the
surface and at the top of the atmosphere, respectively. The heating rate, estimated at up
to 1.8 K day−1 inside the biomass-burning plume, implied vertical
mixing with turbulent kinetic energy of 0.3 m2 s−2.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-18-8829-2018</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4190-0243</orcidid><orcidid>https://orcid.org/0000-0003-3633-4849</orcidid><orcidid>https://orcid.org/0000-0002-8394-2292</orcidid><orcidid>https://orcid.org/0000-0003-3538-0122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1680-7324 |
ispartof | Atmospheric chemistry and physics, 2018-06, Vol.18 (12), p.8829-8848 |
issn | 1680-7324 1680-7316 1680-7324 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2d6fa6f45a534d6e922d002227cb4186 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals; Alma/SFX Local Collection |
subjects | Aerodynamics Aerosol optical depth Aerosols Albedo Albedo (solar) Approximation Arctic zone Atmosphere Atmospheric models Atmospheric radiation Biomass Biomass burning Biomass burning plumes Burning Chemical properties Combustion Computer simulation Environmental aspects Environmental impact analysis Genetic transformation Heating Heating rate Hygroscopicity Kinetic energy Meteorological satellites Methods Optical analysis Organic chemistry Profiles Radiation Radiation budget Radiative forcing Radiative transfer Radiative transfer models Radiometers Remote sensing Satellites Sky Smoke Turbulent kinetic energy Vertical mixing |
title | Radiative impact of an extreme Arctic biomass-burning event |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20impact%20of%20an%20extreme%20Arctic%20biomass-burning%20event&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Lisok,%20Justyna&rft.date=2018-06-22&rft.volume=18&rft.issue=12&rft.spage=8829&rft.epage=8848&rft.pages=8829-8848&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-18-8829-2018&rft_dat=%3Cgale_doaj_%3EA543964784%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2176643917&rft_id=info:pmid/&rft_galeid=A543964784&rfr_iscdi=true |