Loading…

Radiative impact of an extreme Arctic biomass-burning event

The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics 2018-06, Vol.18 (12), p.8829-8848
Main Authors: Lisok, Justyna, Rozwadowska, Anna, Pedersen, Jesper G, Markowicz, Krzysztof M, Ritter, Christoph, Kaminski, Jacek W, Struzewska, Joanna, Mazzola, Mauro, Udisti, Roberto, Becagli, Silvia, Gorecka, Izabela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73
cites cdi_FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73
container_end_page 8848
container_issue 12
container_start_page 8829
container_title Atmospheric chemistry and physics
container_volume 18
creator Lisok, Justyna
Rozwadowska, Anna
Pedersen, Jesper G
Markowicz, Krzysztof M
Ritter, Christoph
Kaminski, Jacek W
Struzewska, Joanna
Mazzola, Mauro
Udisti, Roberto
Becagli, Silvia
Gorecka, Izabela
description The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m-2/τ550 and −71 W m-2/τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m2 s−2.
doi_str_mv 10.5194/acp-18-8829-2018
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2d6fa6f45a534d6e922d002227cb4186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543964784</galeid><doaj_id>oai_doaj_org_article_2d6fa6f45a534d6e922d002227cb4186</doaj_id><sourcerecordid>A543964784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73</originalsourceid><addsrcrecordid>eNptkctrGzEQxpfSQNMk9x4XeuphE43eoicT-jAECmlzFrN6GJnsypXWof3vK9clraHoMGL4zTePr-veALkWYPgNut0AetCamoES0C-6c5CaDIpR_vKf_6vuda1bQqggwM-79_foEy7pKfRp2qFb-hx7nPvwYylhCv2quCW5fkx5wlqHcV_mNG_68BTm5bI7i_hYw9WfeNE9fPzw7fbzcPfl0_p2dTc4weUyaAARDFISR-oNAIFAPCHKBDBqlOgk85pp5giLQkUKZqQ0UmeE0EJ5xS669VHXZ9zaXUkTlp82Y7K_E7lsLJY25WOw1MuIMnKBgnEvg6G0taKUKjdy0LJpvT1q7Ur-vg91sdvcdmrjWwpKSs4MqL_UBptommNeCropVWdXoiGSK80bdf0fqj0fpuTyHGJq-ZOCdycFjVnaoTe4r9Wuv96fsuTIupJrLSE-Lw7EHhy3zXEL2h4ctwfH2S9OxZmm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176643917</pqid></control><display><type>article</type><title>Radiative impact of an extreme Arctic biomass-burning event</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><creator>Lisok, Justyna ; Rozwadowska, Anna ; Pedersen, Jesper G ; Markowicz, Krzysztof M ; Ritter, Christoph ; Kaminski, Jacek W ; Struzewska, Joanna ; Mazzola, Mauro ; Udisti, Roberto ; Becagli, Silvia ; Gorecka, Izabela</creator><creatorcontrib>Lisok, Justyna ; Rozwadowska, Anna ; Pedersen, Jesper G ; Markowicz, Krzysztof M ; Ritter, Christoph ; Kaminski, Jacek W ; Struzewska, Joanna ; Mazzola, Mauro ; Udisti, Roberto ; Becagli, Silvia ; Gorecka, Izabela</creatorcontrib><description>The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m-2/τ550 and −71 W m-2/τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m2 s−2.</description><identifier>ISSN: 1680-7324</identifier><identifier>ISSN: 1680-7316</identifier><identifier>EISSN: 1680-7324</identifier><identifier>DOI: 10.5194/acp-18-8829-2018</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerodynamics ; Aerosol optical depth ; Aerosols ; Albedo ; Albedo (solar) ; Approximation ; Arctic zone ; Atmosphere ; Atmospheric models ; Atmospheric radiation ; Biomass ; Biomass burning ; Biomass burning plumes ; Burning ; Chemical properties ; Combustion ; Computer simulation ; Environmental aspects ; Environmental impact analysis ; Genetic transformation ; Heating ; Heating rate ; Hygroscopicity ; Kinetic energy ; Meteorological satellites ; Methods ; Optical analysis ; Organic chemistry ; Profiles ; Radiation ; Radiation budget ; Radiative forcing ; Radiative transfer ; Radiative transfer models ; Radiometers ; Remote sensing ; Satellites ; Sky ; Smoke ; Turbulent kinetic energy ; Vertical mixing</subject><ispartof>Atmospheric chemistry and physics, 2018-06, Vol.18 (12), p.8829-8848</ispartof><rights>COPYRIGHT 2018 Copernicus GmbH</rights><rights>2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73</citedby><cites>FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73</cites><orcidid>0000-0003-4190-0243 ; 0000-0003-3633-4849 ; 0000-0002-8394-2292 ; 0000-0003-3538-0122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2176643917/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2176643917?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><creatorcontrib>Lisok, Justyna</creatorcontrib><creatorcontrib>Rozwadowska, Anna</creatorcontrib><creatorcontrib>Pedersen, Jesper G</creatorcontrib><creatorcontrib>Markowicz, Krzysztof M</creatorcontrib><creatorcontrib>Ritter, Christoph</creatorcontrib><creatorcontrib>Kaminski, Jacek W</creatorcontrib><creatorcontrib>Struzewska, Joanna</creatorcontrib><creatorcontrib>Mazzola, Mauro</creatorcontrib><creatorcontrib>Udisti, Roberto</creatorcontrib><creatorcontrib>Becagli, Silvia</creatorcontrib><creatorcontrib>Gorecka, Izabela</creatorcontrib><title>Radiative impact of an extreme Arctic biomass-burning event</title><title>Atmospheric chemistry and physics</title><description>The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m-2/τ550 and −71 W m-2/τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m2 s−2.</description><subject>Aerodynamics</subject><subject>Aerosol optical depth</subject><subject>Aerosols</subject><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Approximation</subject><subject>Arctic zone</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Atmospheric radiation</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Biomass burning plumes</subject><subject>Burning</subject><subject>Chemical properties</subject><subject>Combustion</subject><subject>Computer simulation</subject><subject>Environmental aspects</subject><subject>Environmental impact analysis</subject><subject>Genetic transformation</subject><subject>Heating</subject><subject>Heating rate</subject><subject>Hygroscopicity</subject><subject>Kinetic energy</subject><subject>Meteorological satellites</subject><subject>Methods</subject><subject>Optical analysis</subject><subject>Organic chemistry</subject><subject>Profiles</subject><subject>Radiation</subject><subject>Radiation budget</subject><subject>Radiative forcing</subject><subject>Radiative transfer</subject><subject>Radiative transfer models</subject><subject>Radiometers</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Sky</subject><subject>Smoke</subject><subject>Turbulent kinetic energy</subject><subject>Vertical mixing</subject><issn>1680-7324</issn><issn>1680-7316</issn><issn>1680-7324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkctrGzEQxpfSQNMk9x4XeuphE43eoicT-jAECmlzFrN6GJnsypXWof3vK9clraHoMGL4zTePr-veALkWYPgNut0AetCamoES0C-6c5CaDIpR_vKf_6vuda1bQqggwM-79_foEy7pKfRp2qFb-hx7nPvwYylhCv2quCW5fkx5wlqHcV_mNG_68BTm5bI7i_hYw9WfeNE9fPzw7fbzcPfl0_p2dTc4weUyaAARDFISR-oNAIFAPCHKBDBqlOgk85pp5giLQkUKZqQ0UmeE0EJ5xS669VHXZ9zaXUkTlp82Y7K_E7lsLJY25WOw1MuIMnKBgnEvg6G0taKUKjdy0LJpvT1q7Ur-vg91sdvcdmrjWwpKSs4MqL_UBptommNeCropVWdXoiGSK80bdf0fqj0fpuTyHGJq-ZOCdycFjVnaoTe4r9Wuv96fsuTIupJrLSE-Lw7EHhy3zXEL2h4ctwfH2S9OxZmm</recordid><startdate>20180622</startdate><enddate>20180622</enddate><creator>Lisok, Justyna</creator><creator>Rozwadowska, Anna</creator><creator>Pedersen, Jesper G</creator><creator>Markowicz, Krzysztof M</creator><creator>Ritter, Christoph</creator><creator>Kaminski, Jacek W</creator><creator>Struzewska, Joanna</creator><creator>Mazzola, Mauro</creator><creator>Udisti, Roberto</creator><creator>Becagli, Silvia</creator><creator>Gorecka, Izabela</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4190-0243</orcidid><orcidid>https://orcid.org/0000-0003-3633-4849</orcidid><orcidid>https://orcid.org/0000-0002-8394-2292</orcidid><orcidid>https://orcid.org/0000-0003-3538-0122</orcidid></search><sort><creationdate>20180622</creationdate><title>Radiative impact of an extreme Arctic biomass-burning event</title><author>Lisok, Justyna ; Rozwadowska, Anna ; Pedersen, Jesper G ; Markowicz, Krzysztof M ; Ritter, Christoph ; Kaminski, Jacek W ; Struzewska, Joanna ; Mazzola, Mauro ; Udisti, Roberto ; Becagli, Silvia ; Gorecka, Izabela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamics</topic><topic>Aerosol optical depth</topic><topic>Aerosols</topic><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Approximation</topic><topic>Arctic zone</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Atmospheric radiation</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Biomass burning plumes</topic><topic>Burning</topic><topic>Chemical properties</topic><topic>Combustion</topic><topic>Computer simulation</topic><topic>Environmental aspects</topic><topic>Environmental impact analysis</topic><topic>Genetic transformation</topic><topic>Heating</topic><topic>Heating rate</topic><topic>Hygroscopicity</topic><topic>Kinetic energy</topic><topic>Meteorological satellites</topic><topic>Methods</topic><topic>Optical analysis</topic><topic>Organic chemistry</topic><topic>Profiles</topic><topic>Radiation</topic><topic>Radiation budget</topic><topic>Radiative forcing</topic><topic>Radiative transfer</topic><topic>Radiative transfer models</topic><topic>Radiometers</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Sky</topic><topic>Smoke</topic><topic>Turbulent kinetic energy</topic><topic>Vertical mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisok, Justyna</creatorcontrib><creatorcontrib>Rozwadowska, Anna</creatorcontrib><creatorcontrib>Pedersen, Jesper G</creatorcontrib><creatorcontrib>Markowicz, Krzysztof M</creatorcontrib><creatorcontrib>Ritter, Christoph</creatorcontrib><creatorcontrib>Kaminski, Jacek W</creatorcontrib><creatorcontrib>Struzewska, Joanna</creatorcontrib><creatorcontrib>Mazzola, Mauro</creatorcontrib><creatorcontrib>Udisti, Roberto</creatorcontrib><creatorcontrib>Becagli, Silvia</creatorcontrib><creatorcontrib>Gorecka, Izabela</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmospheric chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisok, Justyna</au><au>Rozwadowska, Anna</au><au>Pedersen, Jesper G</au><au>Markowicz, Krzysztof M</au><au>Ritter, Christoph</au><au>Kaminski, Jacek W</au><au>Struzewska, Joanna</au><au>Mazzola, Mauro</au><au>Udisti, Roberto</au><au>Becagli, Silvia</au><au>Gorecka, Izabela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative impact of an extreme Arctic biomass-burning event</atitle><jtitle>Atmospheric chemistry and physics</jtitle><date>2018-06-22</date><risdate>2018</risdate><volume>18</volume><issue>12</issue><spage>8829</spage><epage>8848</epage><pages>8829-8848</pages><issn>1680-7324</issn><issn>1680-7316</issn><eissn>1680-7324</eissn><abstract>The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m-2/τ550 and −71 W m-2/τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m2 s−2.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/acp-18-8829-2018</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4190-0243</orcidid><orcidid>https://orcid.org/0000-0003-3633-4849</orcidid><orcidid>https://orcid.org/0000-0002-8394-2292</orcidid><orcidid>https://orcid.org/0000-0003-3538-0122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1680-7324
ispartof Atmospheric chemistry and physics, 2018-06, Vol.18 (12), p.8829-8848
issn 1680-7324
1680-7316
1680-7324
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2d6fa6f45a534d6e922d002227cb4186
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); DOAJ Directory of Open Access Journals; Alma/SFX Local Collection
subjects Aerodynamics
Aerosol optical depth
Aerosols
Albedo
Albedo (solar)
Approximation
Arctic zone
Atmosphere
Atmospheric models
Atmospheric radiation
Biomass
Biomass burning
Biomass burning plumes
Burning
Chemical properties
Combustion
Computer simulation
Environmental aspects
Environmental impact analysis
Genetic transformation
Heating
Heating rate
Hygroscopicity
Kinetic energy
Meteorological satellites
Methods
Optical analysis
Organic chemistry
Profiles
Radiation
Radiation budget
Radiative forcing
Radiative transfer
Radiative transfer models
Radiometers
Remote sensing
Satellites
Sky
Smoke
Turbulent kinetic energy
Vertical mixing
title Radiative impact of an extreme Arctic biomass-burning event
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative%20impact%20of%20an%20extreme%20Arctic%20biomass-burning%20event&rft.jtitle=Atmospheric%20chemistry%20and%20physics&rft.au=Lisok,%20Justyna&rft.date=2018-06-22&rft.volume=18&rft.issue=12&rft.spage=8829&rft.epage=8848&rft.pages=8829-8848&rft.issn=1680-7324&rft.eissn=1680-7324&rft_id=info:doi/10.5194/acp-18-8829-2018&rft_dat=%3Cgale_doaj_%3EA543964784%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c546t-8115e9a20fb2d91101e0d0079e197b6ac63d8383c03f57f219b22f2c955857d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2176643917&rft_id=info:pmid/&rft_galeid=A543964784&rfr_iscdi=true