Loading…

Jerusalem Artichoke as a Raw Material for Manufacturing Alternative Fuels for Gasoline Internal Combustion Engines

The Jerusalem artichoke (Helianthus tuberosus) is a high-yield crop, and a great source of fermentable sugars, which gives the plant the potential to be used as raw material for economical fuel alcohol production. In this article, the authors focus on the technological aspect of the biofuel manufact...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2024-05, Vol.17 (10), p.2378
Main Authors: Bembenek, Michał, Melnyk, Vasyl, Karwat, Bolesław, Hnyp, Mariia, Kowalski, Łukasz, Mosora, Yurii
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Jerusalem artichoke (Helianthus tuberosus) is a high-yield crop, and a great source of fermentable sugars, which gives the plant the potential to be used as raw material for economical fuel alcohol production. In this article, the authors focus on the technological aspect of the biofuel manufacturing process and its properties. First, the fuel alcohol manufacturing process is described, afterwards assessing its characteristics such as kinematic viscosity, density and octane number. The amount of fuel alcohol obtained from 10 kg of biomass equals to 0.85 L. Afterwards, the mixtures of gasoline and obtained fuel alcohol are prepared and studied. Optimal alcohol and gasoline mixtures are determined to obtain biofuels with octane ratings of 92, 95 and 98. The kinematic viscosity of obtained mixtures does not differ significantly from its values for pure gasoline. The obtained biofuel mixture with 25% alcohol content yielded a decrease of sulfur content by 38%, an increase of vaporized fuel amount by 17.5% at 70 °C and by 10.5% at a temperature of 100 °C, which improves engine startup time and ensures its stable operation in comparison to pure gasoline. The alcohol obtained can be successfully used as a high-octane additive for gasolines.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17102378