Loading…
Computational Thermal Model of Unidirectional Composites with Random Fiber Array
The purpose of this work was to study the influence of microstructure on effective transverse thermal behavior of unidirectional fiber reinforced composites. Three types of microstructures are taken into account, including square periodic, hexagonal periodic and random arrangements of circular fiber...
Saved in:
Published in: | MATEC Web of Conferences 2018-01, Vol.237, p.2010 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this work was to study the influence of microstructure on effective transverse thermal behavior of unidirectional fiber reinforced composites. Three types of microstructures are taken into account, including square periodic, hexagonal periodic and random arrangements of circular fibers. Unlike classical results at low fiber volume fractions and low thermal conductivity contrast between fibers and matrices, results provided by finite elements simulations for copper matrix composite reinforced with Carbon T-300 fibers have shown that random microstructures strongly affect the effective thermal properties of unidirectional composites for both high volume fractions and thermal conductivity contrast and can give closer predictions to the experimental results than the regular microstructures and the theoretical model. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/201823702010 |