Loading…

Indispensable role of Galectin-3 in promoting quiescence of hematopoietic stem cells

Hematopoietic stem cells (HSCs) in adult bone marrow (BM) are usually maintained in a state of quiescence. The cellular mechanism coordinating the balance between HSC quiescence and differentiation is not fully understood. Here, we report that galactose-binding lectin-3 (galectin-3; Gal-3) is upregu...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-04, Vol.12 (1), p.2118-2118, Article 2118
Main Authors: Jia, Weizhen, Kong, Lingyu, Kidoya, Hiroyasu, Naito, Hisamichi, Muramatsu, Fumitaka, Hayashi, Yumiko, Hsieh, Han-Yun, Yamakawa, Daishi, Hsu, Daniel K., Liu, Fu-Tong, Takakura, Nobuyuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hematopoietic stem cells (HSCs) in adult bone marrow (BM) are usually maintained in a state of quiescence. The cellular mechanism coordinating the balance between HSC quiescence and differentiation is not fully understood. Here, we report that galactose-binding lectin-3 (galectin-3; Gal-3) is upregulated by Tie2 or Mpl activation to maintain quiescence. Conditional overexpression of Gal-3 in mouse HSCs under the transcriptional control of Tie2 or Vav1 promoters (Gal-3 Tg) causes cell cycle retardation via induction of p21. Conversely, the cell cycle of long-term repopulating HSCs (LT-HSCs) in Gal-3-deficient (Gal-3 -/- ) mice is accelerated, resulting in their exhaustion. Mechanistically, Gal-3 regulates p21 transcription by forming a complex with Sp1, thus blocking cell cycle entry. These results demonstrate that Gal-3 is a negative regulator of cell-cycling in HSCs and plays a crucial role in adult hematopoiesis to prevent HSC exhaustion. Long term haematopoitic stem cells (LT-HSCs) are in a quiescent state during homeostasis, which is critical for their maintenance. Here, the authors show that Gal-3 expression in LT-HSCs is induced in response to Tie2 and Mpl and is both necessary and sufficient for LT-HSC quiescence through regulation of p21.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-22346-2