Loading…
Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy
Objective Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy. Methods Trends of BSN, a deep learning‐based measure translating EEG background to a continuous trend, were studied from a three‐channel montage long‐term EEG monitoring...
Saved in:
Published in: | Annals of clinical and translational neurology 2024-12, Vol.11 (12), p.3267-3279 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4043-79b86928dbcfb10637890e6611bbc4397d640c39f08ad92231674504ca33ea6b3 |
container_end_page | 3279 |
container_issue | 12 |
container_start_page | 3267 |
container_title | Annals of clinical and translational neurology |
container_volume | 11 |
creator | Lagacé, Micheline Montazeri, Saeed Kamino, Daphne Mamak, Eva Ly, Linh G. Hahn, Cecil D. Chau, Vann Vanhatalo, Sampsa Tam, Emily W. Y. |
description | Objective
Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.
Methods
Trends of BSN, a deep learning‐based measure translating EEG background to a continuous trend, were studied from a three‐channel montage long‐term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley‐III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley‐III composite score ≤70 or death) or “Any impairment” (score ≤85 or death).
Results
“Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.
Interpretation
BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase. |
doi_str_mv | 10.1002/acn3.52233 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2d794b31ef0c4c699ad9c39ebbbb98e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2d794b31ef0c4c699ad9c39ebbbb98e3</doaj_id><sourcerecordid>3128826676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4043-79b86928dbcfb10637890e6611bbc4397d640c39f08ad92231674504ca33ea6b3</originalsourceid><addsrcrecordid>eNp9kstq3DAUQE1paUKSTT-gGLophUn0siytyjBM00BIN8la6HE946ktuZKdMH9fTZyEpItqI3F1ONxXUXzC6BwjRC609fS8IoTSd8UxoUQsZIXo-1fvo-IspR1CCGNS0Zp8LI6orBgVBB0XdjmNodcjuFKnBCn14McyNOV6fVkabX9vYpi8K5sQSw9TDA7uoQvDAdNdOURwrR3b4MvWZyB4fQiDtzBsdeb0uN2fFh8a3SU4e7pPirsf69vVz8X1r8ur1fJ6YRlidFFLI7gkwhnbGIw4rYVEwDnGxlhGZe04Q5bKBgntZK4Y85pViFlNKWhu6ElxNXtd0Ds1xLbXca-CbtVjIMSN0nFsbQeKuFoyQzE0yDLLpczGrAaTjxRAs-v77Bom04OzudyouzfStz--3apNuFcY8wpjibPh65Mhhj8TpFH1bbLQdTq3aUqKYiIE4bzmGf3yD7oLU_S5V5liFecil5mpbzNlY0gpQvOSDUbqsAvqsAvqcRcy_Pl1_i_o8-QzgGfgoe1g_x-VWq5u6Cz9CzgpvuU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145668504</pqid></control><display><type>article</type><title>Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Lagacé, Micheline ; Montazeri, Saeed ; Kamino, Daphne ; Mamak, Eva ; Ly, Linh G. ; Hahn, Cecil D. ; Chau, Vann ; Vanhatalo, Sampsa ; Tam, Emily W. Y.</creator><creatorcontrib>Lagacé, Micheline ; Montazeri, Saeed ; Kamino, Daphne ; Mamak, Eva ; Ly, Linh G. ; Hahn, Cecil D. ; Chau, Vann ; Vanhatalo, Sampsa ; Tam, Emily W. Y.</creatorcontrib><description>Objective
Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.
Methods
Trends of BSN, a deep learning‐based measure translating EEG background to a continuous trend, were studied from a three‐channel montage long‐term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley‐III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley‐III composite score ≤70 or death) or “Any impairment” (score ≤85 or death).
Results
“Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.
Interpretation
BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</description><identifier>ISSN: 2328-9503</identifier><identifier>EISSN: 2328-9503</identifier><identifier>DOI: 10.1002/acn3.52233</identifier><identifier>PMID: 39543820</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Automation ; Brain Diseases - diagnosis ; Brain Diseases - physiopathology ; Brain research ; Cerebral palsy ; Convulsions & seizures ; Deep Learning ; Electroencephalography ; Electroencephalography - methods ; Female ; Humans ; Hypothermia ; Infant ; Infant, Newborn ; Infant, Newborn, Diseases - diagnosis ; Infant, Newborn, Diseases - physiopathology ; Male ; Neurodevelopmental Disorders - diagnosis ; Neurodevelopmental Disorders - etiology ; Neurodevelopmental Disorders - physiopathology ; Prognosis ; Prospective Studies ; Sleep ; Statistical analysis ; Trends</subject><ispartof>Annals of clinical and translational neurology, 2024-12, Vol.11 (12), p.3267-3279</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of American Neurological Association.</rights><rights>2024 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4043-79b86928dbcfb10637890e6611bbc4397d640c39f08ad92231674504ca33ea6b3</cites><orcidid>0000-0001-6660-9693 ; 0000-0003-4025-9263 ; 0000-0002-9771-7061 ; 0000-0002-8764-5535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3145668504/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3145668504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11543,25733,27903,27904,36991,36992,44569,46030,46454,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39543820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lagacé, Micheline</creatorcontrib><creatorcontrib>Montazeri, Saeed</creatorcontrib><creatorcontrib>Kamino, Daphne</creatorcontrib><creatorcontrib>Mamak, Eva</creatorcontrib><creatorcontrib>Ly, Linh G.</creatorcontrib><creatorcontrib>Hahn, Cecil D.</creatorcontrib><creatorcontrib>Chau, Vann</creatorcontrib><creatorcontrib>Vanhatalo, Sampsa</creatorcontrib><creatorcontrib>Tam, Emily W. Y.</creatorcontrib><title>Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy</title><title>Annals of clinical and translational neurology</title><addtitle>Ann Clin Transl Neurol</addtitle><description>Objective
Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.
Methods
Trends of BSN, a deep learning‐based measure translating EEG background to a continuous trend, were studied from a three‐channel montage long‐term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley‐III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley‐III composite score ≤70 or death) or “Any impairment” (score ≤85 or death).
Results
“Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.
Interpretation
BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</description><subject>Automation</subject><subject>Brain Diseases - diagnosis</subject><subject>Brain Diseases - physiopathology</subject><subject>Brain research</subject><subject>Cerebral palsy</subject><subject>Convulsions & seizures</subject><subject>Deep Learning</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Hypothermia</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Infant, Newborn, Diseases - diagnosis</subject><subject>Infant, Newborn, Diseases - physiopathology</subject><subject>Male</subject><subject>Neurodevelopmental Disorders - diagnosis</subject><subject>Neurodevelopmental Disorders - etiology</subject><subject>Neurodevelopmental Disorders - physiopathology</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Sleep</subject><subject>Statistical analysis</subject><subject>Trends</subject><issn>2328-9503</issn><issn>2328-9503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstq3DAUQE1paUKSTT-gGLophUn0siytyjBM00BIN8la6HE946ktuZKdMH9fTZyEpItqI3F1ONxXUXzC6BwjRC609fS8IoTSd8UxoUQsZIXo-1fvo-IspR1CCGNS0Zp8LI6orBgVBB0XdjmNodcjuFKnBCn14McyNOV6fVkabX9vYpi8K5sQSw9TDA7uoQvDAdNdOURwrR3b4MvWZyB4fQiDtzBsdeb0uN2fFh8a3SU4e7pPirsf69vVz8X1r8ur1fJ6YRlidFFLI7gkwhnbGIw4rYVEwDnGxlhGZe04Q5bKBgntZK4Y85pViFlNKWhu6ElxNXtd0Ds1xLbXca-CbtVjIMSN0nFsbQeKuFoyQzE0yDLLpczGrAaTjxRAs-v77Bom04OzudyouzfStz--3apNuFcY8wpjibPh65Mhhj8TpFH1bbLQdTq3aUqKYiIE4bzmGf3yD7oLU_S5V5liFecil5mpbzNlY0gpQvOSDUbqsAvqsAvqcRcy_Pl1_i_o8-QzgGfgoe1g_x-VWq5u6Cz9CzgpvuU</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Lagacé, Micheline</creator><creator>Montazeri, Saeed</creator><creator>Kamino, Daphne</creator><creator>Mamak, Eva</creator><creator>Ly, Linh G.</creator><creator>Hahn, Cecil D.</creator><creator>Chau, Vann</creator><creator>Vanhatalo, Sampsa</creator><creator>Tam, Emily W. Y.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6660-9693</orcidid><orcidid>https://orcid.org/0000-0003-4025-9263</orcidid><orcidid>https://orcid.org/0000-0002-9771-7061</orcidid><orcidid>https://orcid.org/0000-0002-8764-5535</orcidid></search><sort><creationdate>202412</creationdate><title>Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy</title><author>Lagacé, Micheline ; Montazeri, Saeed ; Kamino, Daphne ; Mamak, Eva ; Ly, Linh G. ; Hahn, Cecil D. ; Chau, Vann ; Vanhatalo, Sampsa ; Tam, Emily W. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4043-79b86928dbcfb10637890e6611bbc4397d640c39f08ad92231674504ca33ea6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Brain Diseases - diagnosis</topic><topic>Brain Diseases - physiopathology</topic><topic>Brain research</topic><topic>Cerebral palsy</topic><topic>Convulsions & seizures</topic><topic>Deep Learning</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Hypothermia</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Infant, Newborn, Diseases - diagnosis</topic><topic>Infant, Newborn, Diseases - physiopathology</topic><topic>Male</topic><topic>Neurodevelopmental Disorders - diagnosis</topic><topic>Neurodevelopmental Disorders - etiology</topic><topic>Neurodevelopmental Disorders - physiopathology</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Sleep</topic><topic>Statistical analysis</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagacé, Micheline</creatorcontrib><creatorcontrib>Montazeri, Saeed</creatorcontrib><creatorcontrib>Kamino, Daphne</creatorcontrib><creatorcontrib>Mamak, Eva</creatorcontrib><creatorcontrib>Ly, Linh G.</creatorcontrib><creatorcontrib>Hahn, Cecil D.</creatorcontrib><creatorcontrib>Chau, Vann</creatorcontrib><creatorcontrib>Vanhatalo, Sampsa</creatorcontrib><creatorcontrib>Tam, Emily W. Y.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Psychology Database (ProQuest)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Annals of clinical and translational neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagacé, Micheline</au><au>Montazeri, Saeed</au><au>Kamino, Daphne</au><au>Mamak, Eva</au><au>Ly, Linh G.</au><au>Hahn, Cecil D.</au><au>Chau, Vann</au><au>Vanhatalo, Sampsa</au><au>Tam, Emily W. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy</atitle><jtitle>Annals of clinical and translational neurology</jtitle><addtitle>Ann Clin Transl Neurol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>11</volume><issue>12</issue><spage>3267</spage><epage>3279</epage><pages>3267-3279</pages><issn>2328-9503</issn><eissn>2328-9503</eissn><abstract>Objective
Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy.
Methods
Trends of BSN, a deep learning‐based measure translating EEG background to a continuous trend, were studied from a three‐channel montage long‐term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley‐III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley‐III composite score ≤70 or death) or “Any impairment” (score ≤85 or death).
Results
“Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age.
Interpretation
BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>39543820</pmid><doi>10.1002/acn3.52233</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6660-9693</orcidid><orcidid>https://orcid.org/0000-0003-4025-9263</orcidid><orcidid>https://orcid.org/0000-0002-9771-7061</orcidid><orcidid>https://orcid.org/0000-0002-8764-5535</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2328-9503 |
ispartof | Annals of clinical and translational neurology, 2024-12, Vol.11 (12), p.3267-3279 |
issn | 2328-9503 2328-9503 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2d794b31ef0c4c699ad9c39ebbbb98e3 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest); PubMed Central |
subjects | Automation Brain Diseases - diagnosis Brain Diseases - physiopathology Brain research Cerebral palsy Convulsions & seizures Deep Learning Electroencephalography Electroencephalography - methods Female Humans Hypothermia Infant Infant, Newborn Infant, Newborn, Diseases - diagnosis Infant, Newborn, Diseases - physiopathology Male Neurodevelopmental Disorders - diagnosis Neurodevelopmental Disorders - etiology Neurodevelopmental Disorders - physiopathology Prognosis Prospective Studies Sleep Statistical analysis Trends |
title | Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20assessment%20of%20EEG%20background%20for%20neurodevelopmental%20prediction%20in%20neonatal%20encephalopathy&rft.jtitle=Annals%20of%20clinical%20and%20translational%20neurology&rft.au=Lagac%C3%A9,%20Micheline&rft.date=2024-12&rft.volume=11&rft.issue=12&rft.spage=3267&rft.epage=3279&rft.pages=3267-3279&rft.issn=2328-9503&rft.eissn=2328-9503&rft_id=info:doi/10.1002/acn3.52233&rft_dat=%3Cproquest_doaj_%3E3128826676%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4043-79b86928dbcfb10637890e6611bbc4397d640c39f08ad92231674504ca33ea6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145668504&rft_id=info:pmid/39543820&rfr_iscdi=true |