Loading…

Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy

Objective Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy. Methods Trends of BSN, a deep learning‐based measure translating EEG background to a continuous trend, were studied from a three‐channel montage long‐term EEG monitoring...

Full description

Saved in:
Bibliographic Details
Published in:Annals of clinical and translational neurology 2024-12, Vol.11 (12), p.3267-3279
Main Authors: Lagacé, Micheline, Montazeri, Saeed, Kamino, Daphne, Mamak, Eva, Ly, Linh G., Hahn, Cecil D., Chau, Vann, Vanhatalo, Sampsa, Tam, Emily W. Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4043-79b86928dbcfb10637890e6611bbc4397d640c39f08ad92231674504ca33ea6b3
container_end_page 3279
container_issue 12
container_start_page 3267
container_title Annals of clinical and translational neurology
container_volume 11
creator Lagacé, Micheline
Montazeri, Saeed
Kamino, Daphne
Mamak, Eva
Ly, Linh G.
Hahn, Cecil D.
Chau, Vann
Vanhatalo, Sampsa
Tam, Emily W. Y.
description Objective Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy. Methods Trends of BSN, a deep learning‐based measure translating EEG background to a continuous trend, were studied from a three‐channel montage long‐term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley‐III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley‐III composite score ≤70 or death) or “Any impairment” (score ≤85 or death). Results “Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age. Interpretation BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.
doi_str_mv 10.1002/acn3.52233
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2d794b31ef0c4c699ad9c39ebbbb98e3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2d794b31ef0c4c699ad9c39ebbbb98e3</doaj_id><sourcerecordid>3128826676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4043-79b86928dbcfb10637890e6611bbc4397d640c39f08ad92231674504ca33ea6b3</originalsourceid><addsrcrecordid>eNp9kstq3DAUQE1paUKSTT-gGLophUn0siytyjBM00BIN8la6HE946ktuZKdMH9fTZyEpItqI3F1ONxXUXzC6BwjRC609fS8IoTSd8UxoUQsZIXo-1fvo-IspR1CCGNS0Zp8LI6orBgVBB0XdjmNodcjuFKnBCn14McyNOV6fVkabX9vYpi8K5sQSw9TDA7uoQvDAdNdOURwrR3b4MvWZyB4fQiDtzBsdeb0uN2fFh8a3SU4e7pPirsf69vVz8X1r8ur1fJ6YRlidFFLI7gkwhnbGIw4rYVEwDnGxlhGZe04Q5bKBgntZK4Y85pViFlNKWhu6ElxNXtd0Ds1xLbXca-CbtVjIMSN0nFsbQeKuFoyQzE0yDLLpczGrAaTjxRAs-v77Bom04OzudyouzfStz--3apNuFcY8wpjibPh65Mhhj8TpFH1bbLQdTq3aUqKYiIE4bzmGf3yD7oLU_S5V5liFecil5mpbzNlY0gpQvOSDUbqsAvqsAvqcRcy_Pl1_i_o8-QzgGfgoe1g_x-VWq5u6Cz9CzgpvuU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145668504</pqid></control><display><type>article</type><title>Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Lagacé, Micheline ; Montazeri, Saeed ; Kamino, Daphne ; Mamak, Eva ; Ly, Linh G. ; Hahn, Cecil D. ; Chau, Vann ; Vanhatalo, Sampsa ; Tam, Emily W. Y.</creator><creatorcontrib>Lagacé, Micheline ; Montazeri, Saeed ; Kamino, Daphne ; Mamak, Eva ; Ly, Linh G. ; Hahn, Cecil D. ; Chau, Vann ; Vanhatalo, Sampsa ; Tam, Emily W. Y.</creatorcontrib><description>Objective Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy. Methods Trends of BSN, a deep learning‐based measure translating EEG background to a continuous trend, were studied from a three‐channel montage long‐term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley‐III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley‐III composite score ≤70 or death) or “Any impairment” (score ≤85 or death). Results “Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age. Interpretation BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</description><identifier>ISSN: 2328-9503</identifier><identifier>EISSN: 2328-9503</identifier><identifier>DOI: 10.1002/acn3.52233</identifier><identifier>PMID: 39543820</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Automation ; Brain Diseases - diagnosis ; Brain Diseases - physiopathology ; Brain research ; Cerebral palsy ; Convulsions &amp; seizures ; Deep Learning ; Electroencephalography ; Electroencephalography - methods ; Female ; Humans ; Hypothermia ; Infant ; Infant, Newborn ; Infant, Newborn, Diseases - diagnosis ; Infant, Newborn, Diseases - physiopathology ; Male ; Neurodevelopmental Disorders - diagnosis ; Neurodevelopmental Disorders - etiology ; Neurodevelopmental Disorders - physiopathology ; Prognosis ; Prospective Studies ; Sleep ; Statistical analysis ; Trends</subject><ispartof>Annals of clinical and translational neurology, 2024-12, Vol.11 (12), p.3267-3279</ispartof><rights>2024 The Author(s). published by Wiley Periodicals LLC on behalf of American Neurological Association.</rights><rights>2024 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4043-79b86928dbcfb10637890e6611bbc4397d640c39f08ad92231674504ca33ea6b3</cites><orcidid>0000-0001-6660-9693 ; 0000-0003-4025-9263 ; 0000-0002-9771-7061 ; 0000-0002-8764-5535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3145668504/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3145668504?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11543,25733,27903,27904,36991,36992,44569,46030,46454,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39543820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lagacé, Micheline</creatorcontrib><creatorcontrib>Montazeri, Saeed</creatorcontrib><creatorcontrib>Kamino, Daphne</creatorcontrib><creatorcontrib>Mamak, Eva</creatorcontrib><creatorcontrib>Ly, Linh G.</creatorcontrib><creatorcontrib>Hahn, Cecil D.</creatorcontrib><creatorcontrib>Chau, Vann</creatorcontrib><creatorcontrib>Vanhatalo, Sampsa</creatorcontrib><creatorcontrib>Tam, Emily W. Y.</creatorcontrib><title>Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy</title><title>Annals of clinical and translational neurology</title><addtitle>Ann Clin Transl Neurol</addtitle><description>Objective Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy. Methods Trends of BSN, a deep learning‐based measure translating EEG background to a continuous trend, were studied from a three‐channel montage long‐term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley‐III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley‐III composite score ≤70 or death) or “Any impairment” (score ≤85 or death). Results “Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age. Interpretation BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</description><subject>Automation</subject><subject>Brain Diseases - diagnosis</subject><subject>Brain Diseases - physiopathology</subject><subject>Brain research</subject><subject>Cerebral palsy</subject><subject>Convulsions &amp; seizures</subject><subject>Deep Learning</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Hypothermia</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Infant, Newborn, Diseases - diagnosis</subject><subject>Infant, Newborn, Diseases - physiopathology</subject><subject>Male</subject><subject>Neurodevelopmental Disorders - diagnosis</subject><subject>Neurodevelopmental Disorders - etiology</subject><subject>Neurodevelopmental Disorders - physiopathology</subject><subject>Prognosis</subject><subject>Prospective Studies</subject><subject>Sleep</subject><subject>Statistical analysis</subject><subject>Trends</subject><issn>2328-9503</issn><issn>2328-9503</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstq3DAUQE1paUKSTT-gGLophUn0siytyjBM00BIN8la6HE946ktuZKdMH9fTZyEpItqI3F1ONxXUXzC6BwjRC609fS8IoTSd8UxoUQsZIXo-1fvo-IspR1CCGNS0Zp8LI6orBgVBB0XdjmNodcjuFKnBCn14McyNOV6fVkabX9vYpi8K5sQSw9TDA7uoQvDAdNdOURwrR3b4MvWZyB4fQiDtzBsdeb0uN2fFh8a3SU4e7pPirsf69vVz8X1r8ur1fJ6YRlidFFLI7gkwhnbGIw4rYVEwDnGxlhGZe04Q5bKBgntZK4Y85pViFlNKWhu6ElxNXtd0Ds1xLbXca-CbtVjIMSN0nFsbQeKuFoyQzE0yDLLpczGrAaTjxRAs-v77Bom04OzudyouzfStz--3apNuFcY8wpjibPh65Mhhj8TpFH1bbLQdTq3aUqKYiIE4bzmGf3yD7oLU_S5V5liFecil5mpbzNlY0gpQvOSDUbqsAvqsAvqcRcy_Pl1_i_o8-QzgGfgoe1g_x-VWq5u6Cz9CzgpvuU</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Lagacé, Micheline</creator><creator>Montazeri, Saeed</creator><creator>Kamino, Daphne</creator><creator>Mamak, Eva</creator><creator>Ly, Linh G.</creator><creator>Hahn, Cecil D.</creator><creator>Chau, Vann</creator><creator>Vanhatalo, Sampsa</creator><creator>Tam, Emily W. Y.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6660-9693</orcidid><orcidid>https://orcid.org/0000-0003-4025-9263</orcidid><orcidid>https://orcid.org/0000-0002-9771-7061</orcidid><orcidid>https://orcid.org/0000-0002-8764-5535</orcidid></search><sort><creationdate>202412</creationdate><title>Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy</title><author>Lagacé, Micheline ; Montazeri, Saeed ; Kamino, Daphne ; Mamak, Eva ; Ly, Linh G. ; Hahn, Cecil D. ; Chau, Vann ; Vanhatalo, Sampsa ; Tam, Emily W. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4043-79b86928dbcfb10637890e6611bbc4397d640c39f08ad92231674504ca33ea6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automation</topic><topic>Brain Diseases - diagnosis</topic><topic>Brain Diseases - physiopathology</topic><topic>Brain research</topic><topic>Cerebral palsy</topic><topic>Convulsions &amp; seizures</topic><topic>Deep Learning</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Hypothermia</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Infant, Newborn, Diseases - diagnosis</topic><topic>Infant, Newborn, Diseases - physiopathology</topic><topic>Male</topic><topic>Neurodevelopmental Disorders - diagnosis</topic><topic>Neurodevelopmental Disorders - etiology</topic><topic>Neurodevelopmental Disorders - physiopathology</topic><topic>Prognosis</topic><topic>Prospective Studies</topic><topic>Sleep</topic><topic>Statistical analysis</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagacé, Micheline</creatorcontrib><creatorcontrib>Montazeri, Saeed</creatorcontrib><creatorcontrib>Kamino, Daphne</creatorcontrib><creatorcontrib>Mamak, Eva</creatorcontrib><creatorcontrib>Ly, Linh G.</creatorcontrib><creatorcontrib>Hahn, Cecil D.</creatorcontrib><creatorcontrib>Chau, Vann</creatorcontrib><creatorcontrib>Vanhatalo, Sampsa</creatorcontrib><creatorcontrib>Tam, Emily W. Y.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Psychology Database (ProQuest)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Annals of clinical and translational neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagacé, Micheline</au><au>Montazeri, Saeed</au><au>Kamino, Daphne</au><au>Mamak, Eva</au><au>Ly, Linh G.</au><au>Hahn, Cecil D.</au><au>Chau, Vann</au><au>Vanhatalo, Sampsa</au><au>Tam, Emily W. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy</atitle><jtitle>Annals of clinical and translational neurology</jtitle><addtitle>Ann Clin Transl Neurol</addtitle><date>2024-12</date><risdate>2024</risdate><volume>11</volume><issue>12</issue><spage>3267</spage><epage>3279</epage><pages>3267-3279</pages><issn>2328-9503</issn><eissn>2328-9503</eissn><abstract>Objective Assess the capacity of brain state of the newborn (BSN) to predict neurodevelopment outcomes in neonatal encephalopathy. Methods Trends of BSN, a deep learning‐based measure translating EEG background to a continuous trend, were studied from a three‐channel montage long‐term EEG monitoring from a prospective cohort of 92 infants with neonatal encephalopathy and neurodevelopmental outcomes assessed by Bayley Scales of Infant Development, 3rd edition (Bayley‐III) at 18 months. Outcome prediction used categories “Severe impairment” (Bayley‐III composite score ≤70 or death) or “Any impairment” (score ≤85 or death). Results “Severe impairment” was predicted best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language (24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes (12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs for outcome predictions evolved with the postnatal age. Low BSN scores reached a 100% positive prediction of poor outcomes at 24 h of age. Interpretation BSN is an excellent predictor of adverse neurodevelopmental outcomes in survivors of neonatal encephalopathy after therapeutic hypothermia, even at 24 h of life. The trend provides a fully automated, objective, quantified, and reliable interpretation of EEG background. The high temporal resolution supports continuous bedside brain assessment and early prognostication during the initial dynamic recovery phase.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39543820</pmid><doi>10.1002/acn3.52233</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6660-9693</orcidid><orcidid>https://orcid.org/0000-0003-4025-9263</orcidid><orcidid>https://orcid.org/0000-0002-9771-7061</orcidid><orcidid>https://orcid.org/0000-0002-8764-5535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2328-9503
ispartof Annals of clinical and translational neurology, 2024-12, Vol.11 (12), p.3267-3279
issn 2328-9503
2328-9503
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2d794b31ef0c4c699ad9c39ebbbb98e3
source Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content (ProQuest); PubMed Central
subjects Automation
Brain Diseases - diagnosis
Brain Diseases - physiopathology
Brain research
Cerebral palsy
Convulsions & seizures
Deep Learning
Electroencephalography
Electroencephalography - methods
Female
Humans
Hypothermia
Infant
Infant, Newborn
Infant, Newborn, Diseases - diagnosis
Infant, Newborn, Diseases - physiopathology
Male
Neurodevelopmental Disorders - diagnosis
Neurodevelopmental Disorders - etiology
Neurodevelopmental Disorders - physiopathology
Prognosis
Prospective Studies
Sleep
Statistical analysis
Trends
title Automated assessment of EEG background for neurodevelopmental prediction in neonatal encephalopathy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20assessment%20of%20EEG%20background%20for%20neurodevelopmental%20prediction%20in%20neonatal%20encephalopathy&rft.jtitle=Annals%20of%20clinical%20and%20translational%20neurology&rft.au=Lagac%C3%A9,%20Micheline&rft.date=2024-12&rft.volume=11&rft.issue=12&rft.spage=3267&rft.epage=3279&rft.pages=3267-3279&rft.issn=2328-9503&rft.eissn=2328-9503&rft_id=info:doi/10.1002/acn3.52233&rft_dat=%3Cproquest_doaj_%3E3128826676%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4043-79b86928dbcfb10637890e6611bbc4397d640c39f08ad92231674504ca33ea6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3145668504&rft_id=info:pmid/39543820&rfr_iscdi=true