Loading…

Towards an Accurate Real-Time Digital Elevation Model Using Various GNSS Techniques

The objective of our research is to produce a digital elevation model (DEM) in a real-time domain. For this purpose, GNSS measurements are obtained from a kinematic trajectory in a clear location in New Aswan City, Egypt. Different real-time processing solutions are employed, including real-time pre...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (24), p.8147
Main Authors: Abdelazeem, Mohamed, Abazeed, Amgad, Kamal, Hussain A, Mohamed, Mudathir O A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of our research is to produce a digital elevation model (DEM) in a real-time domain. For this purpose, GNSS measurements are obtained from a kinematic trajectory in a clear location in New Aswan City, Egypt. Different real-time processing solutions are employed, including real-time precise point positioning (RT-PPP) and real-time kinematics (RTK); additionally, the widely used post-processed precise point positioning (PPP) processing scenario is used. Thereafter, the acquired positioning estimates are compared with the traditional kinematic differential GNSS solution counterparts. To achieve the RT-PPP mode, the instantaneous products from the Centre National d'Etudes Spatiales (CNES) are utilized. Our proposed models are validated for both kinematic positioning and DEM accuracies. For kinematic positioning accuracy validation, the findings indicate that the three-dimensional position is about 0.480 m, 0.101 m, and 0.628 for RT-PPP, RTK, and PPP solutions, respectively. Furthermore, the DEM accuracy investigation shows that the produced DEMs have accuracies within 0.249 m, 0.005 m, and 0.264 m for RT-PPP, RTK, and PPP solutions, respectively.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24248147