Loading…
Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk
Zoonotic influenza infections continue to threaten human health. Ongoing surveillance and risk assessment of animal viruses are needed for pandemic preparedness, and population immunity is an important component of risk assessment. We determined age-stratified hemagglutinin inhibition seroprevalence...
Saved in:
Published in: | Emerging infectious diseases 2022-05, Vol.28 (5), p.977-985 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c688t-1cd8858ca88865ec5d272373f17a4ab0f53936de4cb828c94864096ec6c5a803 |
---|---|
cites | cdi_FETCH-LOGICAL-c688t-1cd8858ca88865ec5d272373f17a4ab0f53936de4cb828c94864096ec6c5a803 |
container_end_page | 985 |
container_issue | 5 |
container_start_page | 977 |
container_title | Emerging infectious diseases |
container_volume | 28 |
creator | Cheung, Jonathan Tin Lai Tsang, Tim K Yen, Hui-Ling Perera, Ranawaka A P M Mok, Chris Ka Pun Lin, Yong Ping Cowling, Benjamin J Peiris, Malik |
description | Zoonotic influenza infections continue to threaten human health. Ongoing surveillance and risk assessment of animal viruses are needed for pandemic preparedness, and population immunity is an important component of risk assessment. We determined age-stratified hemagglutinin inhibition seroprevalence against 5 swine influenza viruses circulating in Hong Kong and Guangzhou in China. Using hemagglutinin inhibition seroprevalence and titers, we modeled the effect of population immunity on the basic reproduction number (R
) if each virus were to become transmissible among humans. Among 353 individual serum samples, we reported low seroprevalence for triple-reassortant H1N2 and Eurasian avian-like H1N1 influenza viruses, which would reduce R
by only 18%-20%. The smallest R
needed to cause a pandemic was 1.22-1.24, meaning existing population immunity would be insufficient to block the spread of these H1N1 or H1N2 variants. For human-origin H3N2, existing population immunity could suppress R
by 47%, thus reducing pandemic risk. |
doi_str_mv | 10.3201/eid2805.211965 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2da4d57d4fa34678b0ca07a2bde4ba48</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701832653</galeid><doaj_id>oai_doaj_org_article_2da4d57d4fa34678b0ca07a2bde4ba48</doaj_id><sourcerecordid>A701832653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c688t-1cd8858ca88865ec5d272373f17a4ab0f53936de4cb828c94864096ec6c5a803</originalsourceid><addsrcrecordid>eNqNk89v0zAUxyMEYmNw5YgiISE4pNiOf-UyqRqDVZq0aUxcOFgvjpO6JHaJE7Tx1-OspVpRD8gHW8-f9_XXfn5J8hqjWU4Q_mhsRSRiM4JxwdmT5BgjiTKOWPF0t6boKHkRwgohHFOK58lRzigViBfHyfdPZjB9Z511TXp-Z8MwLS7GDlx67ddjC4P1Ll103ejscJ9CSK-hH1Jfp_MQTAgTvnB1Oxr3G-Keq0xndXpjw4-XybMa2mBebeeT5Pbz-e3ZRXZ59WVxNr_MNJdyyLCupGRSg5SSM6NZRQTJRV5jARRKVLO8yHllqC4lkbqgklNUcKO5ZiBRfpIsNrKVh5Va97aD_l55sOoh4PtGRcdWt0aRCmjFREVryCkXskQakABSRvUSqIxapxut9Vh2ptLGDT20e6L7O84uVeN_qQJRRhmJAu-3Ar3_OZowqM4GbdoWnPFjUIQzSorof_L99h905cfexZeKlKBYEBEvvqMaiBewrvbxXD2JqrlAWOZRMY9UdoBqjDPRpHemtjG8x88O8HE8VO9gwoe9hMgM5m5oYAxBLb7e_D979W2fffeIXRpoh2Xw7Tj9unDQse59CL2pd0XBSE2toLatoDatEBPePC7lDv_79_M_U6kAAg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674172739</pqid></control><display><type>article</type><title>Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk</title><source>PubMed Central</source><creator>Cheung, Jonathan Tin Lai ; Tsang, Tim K ; Yen, Hui-Ling ; Perera, Ranawaka A P M ; Mok, Chris Ka Pun ; Lin, Yong Ping ; Cowling, Benjamin J ; Peiris, Malik</creator><creatorcontrib>Cheung, Jonathan Tin Lai ; Tsang, Tim K ; Yen, Hui-Ling ; Perera, Ranawaka A P M ; Mok, Chris Ka Pun ; Lin, Yong Ping ; Cowling, Benjamin J ; Peiris, Malik</creatorcontrib><description>Zoonotic influenza infections continue to threaten human health. Ongoing surveillance and risk assessment of animal viruses are needed for pandemic preparedness, and population immunity is an important component of risk assessment. We determined age-stratified hemagglutinin inhibition seroprevalence against 5 swine influenza viruses circulating in Hong Kong and Guangzhou in China. Using hemagglutinin inhibition seroprevalence and titers, we modeled the effect of population immunity on the basic reproduction number (R
) if each virus were to become transmissible among humans. Among 353 individual serum samples, we reported low seroprevalence for triple-reassortant H1N2 and Eurasian avian-like H1N1 influenza viruses, which would reduce R
by only 18%-20%. The smallest R
needed to cause a pandemic was 1.22-1.24, meaning existing population immunity would be insufficient to block the spread of these H1N1 or H1N2 variants. For human-origin H3N2, existing population immunity could suppress R
by 47%, thus reducing pandemic risk.</description><identifier>ISSN: 1080-6040</identifier><identifier>EISSN: 1080-6059</identifier><identifier>DOI: 10.3201/eid2805.211965</identifier><identifier>PMID: 35447069</identifier><language>eng</language><publisher>United States: U.S. National Center for Infectious Diseases</publisher><subject>Age groups ; Algorithms ; Animals ; Antibodies ; Antigens ; China ; Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk ; Eigenvalues ; Epidemics ; hemagglutinin ; Hemagglutinins ; Human populations ; Humans ; Immunity ; Immunological research ; Infections ; Influenza ; Influenza A virus ; Influenza A Virus, H1N1 Subtype ; Influenza A Virus, H1N2 Subtype ; Influenza A Virus, H3N2 Subtype ; Influenza, Human ; Methods ; Orthomyxoviridae Infections ; Pandemics ; Population ; Reassortant Viruses - physiology ; Risk assessment ; Risk factors ; Sentinel health events ; Seroepidemiologic Studies ; Serology ; seroprevalence ; Statistics ; Swine ; Swine Diseases - epidemiology ; Swine flu ; Vaccines ; Viruses ; Zoonoses</subject><ispartof>Emerging infectious diseases, 2022-05, Vol.28 (5), p.977-985</ispartof><rights>COPYRIGHT 2022 U.S. National Center for Infectious Diseases</rights><rights>Published 2022. This article is a U.S. Government work and is in the public domain in the USA.</rights><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c688t-1cd8858ca88865ec5d272373f17a4ab0f53936de4cb828c94864096ec6c5a803</citedby><cites>FETCH-LOGICAL-c688t-1cd8858ca88865ec5d272373f17a4ab0f53936de4cb828c94864096ec6c5a803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045452/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045452/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35447069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheung, Jonathan Tin Lai</creatorcontrib><creatorcontrib>Tsang, Tim K</creatorcontrib><creatorcontrib>Yen, Hui-Ling</creatorcontrib><creatorcontrib>Perera, Ranawaka A P M</creatorcontrib><creatorcontrib>Mok, Chris Ka Pun</creatorcontrib><creatorcontrib>Lin, Yong Ping</creatorcontrib><creatorcontrib>Cowling, Benjamin J</creatorcontrib><creatorcontrib>Peiris, Malik</creatorcontrib><title>Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk</title><title>Emerging infectious diseases</title><addtitle>Emerg Infect Dis</addtitle><description>Zoonotic influenza infections continue to threaten human health. Ongoing surveillance and risk assessment of animal viruses are needed for pandemic preparedness, and population immunity is an important component of risk assessment. We determined age-stratified hemagglutinin inhibition seroprevalence against 5 swine influenza viruses circulating in Hong Kong and Guangzhou in China. Using hemagglutinin inhibition seroprevalence and titers, we modeled the effect of population immunity on the basic reproduction number (R
) if each virus were to become transmissible among humans. Among 353 individual serum samples, we reported low seroprevalence for triple-reassortant H1N2 and Eurasian avian-like H1N1 influenza viruses, which would reduce R
by only 18%-20%. The smallest R
needed to cause a pandemic was 1.22-1.24, meaning existing population immunity would be insufficient to block the spread of these H1N1 or H1N2 variants. For human-origin H3N2, existing population immunity could suppress R
by 47%, thus reducing pandemic risk.</description><subject>Age groups</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antigens</subject><subject>China</subject><subject>Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk</subject><subject>Eigenvalues</subject><subject>Epidemics</subject><subject>hemagglutinin</subject><subject>Hemagglutinins</subject><subject>Human populations</subject><subject>Humans</subject><subject>Immunity</subject><subject>Immunological research</subject><subject>Infections</subject><subject>Influenza</subject><subject>Influenza A virus</subject><subject>Influenza A Virus, H1N1 Subtype</subject><subject>Influenza A Virus, H1N2 Subtype</subject><subject>Influenza A Virus, H3N2 Subtype</subject><subject>Influenza, Human</subject><subject>Methods</subject><subject>Orthomyxoviridae Infections</subject><subject>Pandemics</subject><subject>Population</subject><subject>Reassortant Viruses - physiology</subject><subject>Risk assessment</subject><subject>Risk factors</subject><subject>Sentinel health events</subject><subject>Seroepidemiologic Studies</subject><subject>Serology</subject><subject>seroprevalence</subject><subject>Statistics</subject><subject>Swine</subject><subject>Swine Diseases - epidemiology</subject><subject>Swine flu</subject><subject>Vaccines</subject><subject>Viruses</subject><subject>Zoonoses</subject><issn>1080-6040</issn><issn>1080-6059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqNk89v0zAUxyMEYmNw5YgiISE4pNiOf-UyqRqDVZq0aUxcOFgvjpO6JHaJE7Tx1-OspVpRD8gHW8-f9_XXfn5J8hqjWU4Q_mhsRSRiM4JxwdmT5BgjiTKOWPF0t6boKHkRwgohHFOK58lRzigViBfHyfdPZjB9Z511TXp-Z8MwLS7GDlx67ddjC4P1Ll103ejscJ9CSK-hH1Jfp_MQTAgTvnB1Oxr3G-Keq0xndXpjw4-XybMa2mBebeeT5Pbz-e3ZRXZ59WVxNr_MNJdyyLCupGRSg5SSM6NZRQTJRV5jARRKVLO8yHllqC4lkbqgklNUcKO5ZiBRfpIsNrKVh5Va97aD_l55sOoh4PtGRcdWt0aRCmjFREVryCkXskQakABSRvUSqIxapxut9Vh2ptLGDT20e6L7O84uVeN_qQJRRhmJAu-3Ar3_OZowqM4GbdoWnPFjUIQzSorof_L99h905cfexZeKlKBYEBEvvqMaiBewrvbxXD2JqrlAWOZRMY9UdoBqjDPRpHemtjG8x88O8HE8VO9gwoe9hMgM5m5oYAxBLb7e_D979W2fffeIXRpoh2Xw7Tj9unDQse59CL2pd0XBSE2toLatoDatEBPePC7lDv_79_M_U6kAAg</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Cheung, Jonathan Tin Lai</creator><creator>Tsang, Tim K</creator><creator>Yen, Hui-Ling</creator><creator>Perera, Ranawaka A P M</creator><creator>Mok, Chris Ka Pun</creator><creator>Lin, Yong Ping</creator><creator>Cowling, Benjamin J</creator><creator>Peiris, Malik</creator><general>U.S. National Center for Infectious Diseases</general><general>Centers for Disease Control and Prevention</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>M0R</scope><scope>M0S</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>202205</creationdate><title>Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk</title><author>Cheung, Jonathan Tin Lai ; Tsang, Tim K ; Yen, Hui-Ling ; Perera, Ranawaka A P M ; Mok, Chris Ka Pun ; Lin, Yong Ping ; Cowling, Benjamin J ; Peiris, Malik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c688t-1cd8858ca88865ec5d272373f17a4ab0f53936de4cb828c94864096ec6c5a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Age groups</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antigens</topic><topic>China</topic><topic>Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk</topic><topic>Eigenvalues</topic><topic>Epidemics</topic><topic>hemagglutinin</topic><topic>Hemagglutinins</topic><topic>Human populations</topic><topic>Humans</topic><topic>Immunity</topic><topic>Immunological research</topic><topic>Infections</topic><topic>Influenza</topic><topic>Influenza A virus</topic><topic>Influenza A Virus, H1N1 Subtype</topic><topic>Influenza A Virus, H1N2 Subtype</topic><topic>Influenza A Virus, H3N2 Subtype</topic><topic>Influenza, Human</topic><topic>Methods</topic><topic>Orthomyxoviridae Infections</topic><topic>Pandemics</topic><topic>Population</topic><topic>Reassortant Viruses - physiology</topic><topic>Risk assessment</topic><topic>Risk factors</topic><topic>Sentinel health events</topic><topic>Seroepidemiologic Studies</topic><topic>Serology</topic><topic>seroprevalence</topic><topic>Statistics</topic><topic>Swine</topic><topic>Swine Diseases - epidemiology</topic><topic>Swine flu</topic><topic>Vaccines</topic><topic>Viruses</topic><topic>Zoonoses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheung, Jonathan Tin Lai</creatorcontrib><creatorcontrib>Tsang, Tim K</creatorcontrib><creatorcontrib>Yen, Hui-Ling</creatorcontrib><creatorcontrib>Perera, Ranawaka A P M</creatorcontrib><creatorcontrib>Mok, Chris Ka Pun</creatorcontrib><creatorcontrib>Lin, Yong Ping</creatorcontrib><creatorcontrib>Cowling, Benjamin J</creatorcontrib><creatorcontrib>Peiris, Malik</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context : Opposing Viewpoints</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Emerging infectious diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheung, Jonathan Tin Lai</au><au>Tsang, Tim K</au><au>Yen, Hui-Ling</au><au>Perera, Ranawaka A P M</au><au>Mok, Chris Ka Pun</au><au>Lin, Yong Ping</au><au>Cowling, Benjamin J</au><au>Peiris, Malik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk</atitle><jtitle>Emerging infectious diseases</jtitle><addtitle>Emerg Infect Dis</addtitle><date>2022-05</date><risdate>2022</risdate><volume>28</volume><issue>5</issue><spage>977</spage><epage>985</epage><pages>977-985</pages><issn>1080-6040</issn><eissn>1080-6059</eissn><abstract>Zoonotic influenza infections continue to threaten human health. Ongoing surveillance and risk assessment of animal viruses are needed for pandemic preparedness, and population immunity is an important component of risk assessment. We determined age-stratified hemagglutinin inhibition seroprevalence against 5 swine influenza viruses circulating in Hong Kong and Guangzhou in China. Using hemagglutinin inhibition seroprevalence and titers, we modeled the effect of population immunity on the basic reproduction number (R
) if each virus were to become transmissible among humans. Among 353 individual serum samples, we reported low seroprevalence for triple-reassortant H1N2 and Eurasian avian-like H1N1 influenza viruses, which would reduce R
by only 18%-20%. The smallest R
needed to cause a pandemic was 1.22-1.24, meaning existing population immunity would be insufficient to block the spread of these H1N1 or H1N2 variants. For human-origin H3N2, existing population immunity could suppress R
by 47%, thus reducing pandemic risk.</abstract><cop>United States</cop><pub>U.S. National Center for Infectious Diseases</pub><pmid>35447069</pmid><doi>10.3201/eid2805.211965</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1080-6040 |
ispartof | Emerging infectious diseases, 2022-05, Vol.28 (5), p.977-985 |
issn | 1080-6040 1080-6059 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2da4d57d4fa34678b0ca07a2bde4ba48 |
source | PubMed Central |
subjects | Age groups Algorithms Animals Antibodies Antigens China Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk Eigenvalues Epidemics hemagglutinin Hemagglutinins Human populations Humans Immunity Immunological research Infections Influenza Influenza A virus Influenza A Virus, H1N1 Subtype Influenza A Virus, H1N2 Subtype Influenza A Virus, H3N2 Subtype Influenza, Human Methods Orthomyxoviridae Infections Pandemics Population Reassortant Viruses - physiology Risk assessment Risk factors Sentinel health events Seroepidemiologic Studies Serology seroprevalence Statistics Swine Swine Diseases - epidemiology Swine flu Vaccines Viruses Zoonoses |
title | Determining Existing Human Population Immunity as Part of Assessing Influenza Pandemic Risk |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20Existing%20Human%20Population%20Immunity%20as%20Part%20of%20Assessing%20Influenza%20Pandemic%20Risk&rft.jtitle=Emerging%20infectious%20diseases&rft.au=Cheung,%20Jonathan%20Tin%20Lai&rft.date=2022-05&rft.volume=28&rft.issue=5&rft.spage=977&rft.epage=985&rft.pages=977-985&rft.issn=1080-6040&rft.eissn=1080-6059&rft_id=info:doi/10.3201/eid2805.211965&rft_dat=%3Cgale_doaj_%3EA701832653%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c688t-1cd8858ca88865ec5d272373f17a4ab0f53936de4cb828c94864096ec6c5a803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674172739&rft_id=info:pmid/35447069&rft_galeid=A701832653&rfr_iscdi=true |