Loading…
Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG
Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the needs of people with disabilities, some disabled people find it difficult to use regular EPWs that are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology present an efficient solu...
Saved in:
Published in: | Future internet 2024-05, Vol.16 (5), p.158 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-da43d25276951f40530de099a86498bb072a3e70eb974228f5367aaa4636cca83 |
container_end_page | |
container_issue | 5 |
container_start_page | 158 |
container_title | Future internet |
container_volume | 16 |
creator | Zaway, Lassaad Ben Amor, Nader Ktari, Jalel Jallouli, Mohamed Chrifi Alaoui, Larbi Delahoche, Laurent |
description | Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the needs of people with disabilities, some disabled people find it difficult to use regular EPWs that are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology present an efficient solution to this problem. This article presents a cutting-edge intelligent control wheelchair that is intended to improve user involvement and security. The suggested method combines facial expression analysis via a camera with EEG signal processing using the EMOTIV Insight EEG dataset. The system generates control commands by identifying specific EEG patterns linked to facial expressions such as eye blinking, winking left and right, and smiling. Simultaneously, the system uses computer vision algorithms and inertial measurements to analyze gaze direction in order to establish the user’s intended steering. The outcomes of the experiments prove that the proposed system is reliable and efficient in meeting the various requirements of people, presenting a positive development in the field of smart wheelchair technology. |
doi_str_mv | 10.3390/fi16050158 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2da9772de33944db8f139facdfad0abc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795401717</galeid><doaj_id>oai_doaj_org_article_2da9772de33944db8f139facdfad0abc</doaj_id><sourcerecordid>A795401717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-da43d25276951f40530de099a86498bb072a3e70eb974228f5367aaa4636cca83</originalsourceid><addsrcrecordid>eNptkktrGzEUhYfSQEOaTX6BoKsWJtFbo-6McRODQzYpyU7c0cOWmRm5mnEg_fWR49I0UN2FxOE7h6vLraoLgi8Z0_gqRCKxwEQ0H6pTorWuhcbs4z_vT9X5OG5xOUxTKdVp9Xi3m2Iff8MU04BSQA8b7zu7gZjRPA1TTh16ioBu990U69vkoEPLYfLr_Or4XqC-jUMc1ujBtxZ6BINDi8X15-okQDf68z_3WfXzx-J-flOv7q6X89mqtpySqXbAmaOCKqkFCRwLhp3HWkMjuW7aFisKzCvsW604pU0QTCoA4JJJa6FhZ9XymOsSbM0uxx7ys0kQzauQ8tpAnqLtvKEOtFLU-TItzl3bBMJ0AOsCOAytLVlfj1kb6N5F3cxW5qBhLhXVWD6Rwn45srucfu39OJlt2uehfNUwLDSXosHqjVpDaSAOIU0ZbB9Ha2ZKC46JIgfq8j9UKef7aNPgQyz6O8O3o8HmNI7Zh7_dEmwOu2DedoG9AHcjok8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059465807</pqid></control><display><type>article</type><title>Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG</title><source>ABI/INFORM global</source><source>Publicly Available Content Database</source><creator>Zaway, Lassaad ; Ben Amor, Nader ; Ktari, Jalel ; Jallouli, Mohamed ; Chrifi Alaoui, Larbi ; Delahoche, Laurent</creator><creatorcontrib>Zaway, Lassaad ; Ben Amor, Nader ; Ktari, Jalel ; Jallouli, Mohamed ; Chrifi Alaoui, Larbi ; Delahoche, Laurent</creatorcontrib><description>Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the needs of people with disabilities, some disabled people find it difficult to use regular EPWs that are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology present an efficient solution to this problem. This article presents a cutting-edge intelligent control wheelchair that is intended to improve user involvement and security. The suggested method combines facial expression analysis via a camera with EEG signal processing using the EMOTIV Insight EEG dataset. The system generates control commands by identifying specific EEG patterns linked to facial expressions such as eye blinking, winking left and right, and smiling. Simultaneously, the system uses computer vision algorithms and inertial measurements to analyze gaze direction in order to establish the user’s intended steering. The outcomes of the experiments prove that the proposed system is reliable and efficient in meeting the various requirements of people, presenting a positive development in the field of smart wheelchair technology.</description><identifier>ISSN: 1999-5903</identifier><identifier>EISSN: 1999-5903</identifier><identifier>DOI: 10.3390/fi16050158</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Algorithms ; Analysis ; Artificial intelligence ; Blinking ; Brain research ; Computational linguistics ; Computer vision ; Control systems ; control wheelchairs ; convolutional neural network (CNN) ; Deep learning ; Disabled persons ; Electroencephalogram (EEG) ; Electroencephalography ; Embedded systems ; Engineering Sciences ; facial expressions ; fusion data ; Human-computer interface ; Interfaces ; Internet ; Language processing ; Long Short-Term Memory (LSTM) ; Machine vision ; Methods ; Natural language interfaces ; Neural networks ; People with disabilities ; Privacy ; Sensors ; Signal processing ; Spectrum analysis ; Steering ; Wavelet transforms ; Webcams ; Wheelchairs</subject><ispartof>Future internet, 2024-05, Vol.16 (5), p.158</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c421t-da43d25276951f40530de099a86498bb072a3e70eb974228f5367aaa4636cca83</cites><orcidid>0000-0002-0520-9415 ; 0000-0002-8302-8409 ; 0000-0001-5453-8656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059465807/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059465807?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,11667,25731,27901,27902,36037,36989,44339,44566,74865,75096</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04672906$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaway, Lassaad</creatorcontrib><creatorcontrib>Ben Amor, Nader</creatorcontrib><creatorcontrib>Ktari, Jalel</creatorcontrib><creatorcontrib>Jallouli, Mohamed</creatorcontrib><creatorcontrib>Chrifi Alaoui, Larbi</creatorcontrib><creatorcontrib>Delahoche, Laurent</creatorcontrib><title>Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG</title><title>Future internet</title><description>Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the needs of people with disabilities, some disabled people find it difficult to use regular EPWs that are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology present an efficient solution to this problem. This article presents a cutting-edge intelligent control wheelchair that is intended to improve user involvement and security. The suggested method combines facial expression analysis via a camera with EEG signal processing using the EMOTIV Insight EEG dataset. The system generates control commands by identifying specific EEG patterns linked to facial expressions such as eye blinking, winking left and right, and smiling. Simultaneously, the system uses computer vision algorithms and inertial measurements to analyze gaze direction in order to establish the user’s intended steering. The outcomes of the experiments prove that the proposed system is reliable and efficient in meeting the various requirements of people, presenting a positive development in the field of smart wheelchair technology.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Blinking</subject><subject>Brain research</subject><subject>Computational linguistics</subject><subject>Computer vision</subject><subject>Control systems</subject><subject>control wheelchairs</subject><subject>convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Disabled persons</subject><subject>Electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Embedded systems</subject><subject>Engineering Sciences</subject><subject>facial expressions</subject><subject>fusion data</subject><subject>Human-computer interface</subject><subject>Interfaces</subject><subject>Internet</subject><subject>Language processing</subject><subject>Long Short-Term Memory (LSTM)</subject><subject>Machine vision</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>People with disabilities</subject><subject>Privacy</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Steering</subject><subject>Wavelet transforms</subject><subject>Webcams</subject><subject>Wheelchairs</subject><issn>1999-5903</issn><issn>1999-5903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktrGzEUhYfSQEOaTX6BoKsWJtFbo-6McRODQzYpyU7c0cOWmRm5mnEg_fWR49I0UN2FxOE7h6vLraoLgi8Z0_gqRCKxwEQ0H6pTorWuhcbs4z_vT9X5OG5xOUxTKdVp9Xi3m2Iff8MU04BSQA8b7zu7gZjRPA1TTh16ioBu990U69vkoEPLYfLr_Or4XqC-jUMc1ujBtxZ6BINDi8X15-okQDf68z_3WfXzx-J-flOv7q6X89mqtpySqXbAmaOCKqkFCRwLhp3HWkMjuW7aFisKzCvsW604pU0QTCoA4JJJa6FhZ9XymOsSbM0uxx7ys0kQzauQ8tpAnqLtvKEOtFLU-TItzl3bBMJ0AOsCOAytLVlfj1kb6N5F3cxW5qBhLhXVWD6Rwn45srucfu39OJlt2uehfNUwLDSXosHqjVpDaSAOIU0ZbB9Ha2ZKC46JIgfq8j9UKef7aNPgQyz6O8O3o8HmNI7Zh7_dEmwOu2DedoG9AHcjok8</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zaway, Lassaad</creator><creator>Ben Amor, Nader</creator><creator>Ktari, Jalel</creator><creator>Jallouli, Mohamed</creator><creator>Chrifi Alaoui, Larbi</creator><creator>Delahoche, Laurent</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0520-9415</orcidid><orcidid>https://orcid.org/0000-0002-8302-8409</orcidid><orcidid>https://orcid.org/0000-0001-5453-8656</orcidid></search><sort><creationdate>20240501</creationdate><title>Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG</title><author>Zaway, Lassaad ; Ben Amor, Nader ; Ktari, Jalel ; Jallouli, Mohamed ; Chrifi Alaoui, Larbi ; Delahoche, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-da43d25276951f40530de099a86498bb072a3e70eb974228f5367aaa4636cca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Blinking</topic><topic>Brain research</topic><topic>Computational linguistics</topic><topic>Computer vision</topic><topic>Control systems</topic><topic>control wheelchairs</topic><topic>convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Disabled persons</topic><topic>Electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Embedded systems</topic><topic>Engineering Sciences</topic><topic>facial expressions</topic><topic>fusion data</topic><topic>Human-computer interface</topic><topic>Interfaces</topic><topic>Internet</topic><topic>Language processing</topic><topic>Long Short-Term Memory (LSTM)</topic><topic>Machine vision</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>People with disabilities</topic><topic>Privacy</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Steering</topic><topic>Wavelet transforms</topic><topic>Webcams</topic><topic>Wheelchairs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaway, Lassaad</creatorcontrib><creatorcontrib>Ben Amor, Nader</creatorcontrib><creatorcontrib>Ktari, Jalel</creatorcontrib><creatorcontrib>Jallouli, Mohamed</creatorcontrib><creatorcontrib>Chrifi Alaoui, Larbi</creatorcontrib><creatorcontrib>Delahoche, Laurent</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Directory of Open Access Journals</collection><jtitle>Future internet</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaway, Lassaad</au><au>Ben Amor, Nader</au><au>Ktari, Jalel</au><au>Jallouli, Mohamed</au><au>Chrifi Alaoui, Larbi</au><au>Delahoche, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG</atitle><jtitle>Future internet</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>16</volume><issue>5</issue><spage>158</spage><pages>158-</pages><issn>1999-5903</issn><eissn>1999-5903</eissn><abstract>Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the needs of people with disabilities, some disabled people find it difficult to use regular EPWs that are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology present an efficient solution to this problem. This article presents a cutting-edge intelligent control wheelchair that is intended to improve user involvement and security. The suggested method combines facial expression analysis via a camera with EEG signal processing using the EMOTIV Insight EEG dataset. The system generates control commands by identifying specific EEG patterns linked to facial expressions such as eye blinking, winking left and right, and smiling. Simultaneously, the system uses computer vision algorithms and inertial measurements to analyze gaze direction in order to establish the user’s intended steering. The outcomes of the experiments prove that the proposed system is reliable and efficient in meeting the various requirements of people, presenting a positive development in the field of smart wheelchair technology.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fi16050158</doi><orcidid>https://orcid.org/0000-0002-0520-9415</orcidid><orcidid>https://orcid.org/0000-0002-8302-8409</orcidid><orcidid>https://orcid.org/0000-0001-5453-8656</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1999-5903 |
ispartof | Future internet, 2024-05, Vol.16 (5), p.158 |
issn | 1999-5903 1999-5903 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2da9772de33944db8f139facdfad0abc |
source | ABI/INFORM global; Publicly Available Content Database |
subjects | Access control Algorithms Analysis Artificial intelligence Blinking Brain research Computational linguistics Computer vision Control systems control wheelchairs convolutional neural network (CNN) Deep learning Disabled persons Electroencephalogram (EEG) Electroencephalography Embedded systems Engineering Sciences facial expressions fusion data Human-computer interface Interfaces Internet Language processing Long Short-Term Memory (LSTM) Machine vision Methods Natural language interfaces Neural networks People with disabilities Privacy Sensors Signal processing Spectrum analysis Steering Wavelet transforms Webcams Wheelchairs |
title | Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Wheelchair%20Control%20via%20Multi-Modal%20Integration:%20Combining%20Webcam%20and%20EEG&rft.jtitle=Future%20internet&rft.au=Zaway,%20Lassaad&rft.date=2024-05-01&rft.volume=16&rft.issue=5&rft.spage=158&rft.pages=158-&rft.issn=1999-5903&rft.eissn=1999-5903&rft_id=info:doi/10.3390/fi16050158&rft_dat=%3Cgale_doaj_%3EA795401717%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-da43d25276951f40530de099a86498bb072a3e70eb974228f5367aaa4636cca83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059465807&rft_id=info:pmid/&rft_galeid=A795401717&rfr_iscdi=true |