Loading…

Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG

Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the needs of people with disabilities, some disabled people find it difficult to use regular EPWs that are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology present an efficient solu...

Full description

Saved in:
Bibliographic Details
Published in:Future internet 2024-05, Vol.16 (5), p.158
Main Authors: Zaway, Lassaad, Ben Amor, Nader, Ktari, Jalel, Jallouli, Mohamed, Chrifi Alaoui, Larbi, Delahoche, Laurent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c421t-da43d25276951f40530de099a86498bb072a3e70eb974228f5367aaa4636cca83
container_end_page
container_issue 5
container_start_page 158
container_title Future internet
container_volume 16
creator Zaway, Lassaad
Ben Amor, Nader
Ktari, Jalel
Jallouli, Mohamed
Chrifi Alaoui, Larbi
Delahoche, Laurent
description Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the needs of people with disabilities, some disabled people find it difficult to use regular EPWs that are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology present an efficient solution to this problem. This article presents a cutting-edge intelligent control wheelchair that is intended to improve user involvement and security. The suggested method combines facial expression analysis via a camera with EEG signal processing using the EMOTIV Insight EEG dataset. The system generates control commands by identifying specific EEG patterns linked to facial expressions such as eye blinking, winking left and right, and smiling. Simultaneously, the system uses computer vision algorithms and inertial measurements to analyze gaze direction in order to establish the user’s intended steering. The outcomes of the experiments prove that the proposed system is reliable and efficient in meeting the various requirements of people, presenting a positive development in the field of smart wheelchair technology.
doi_str_mv 10.3390/fi16050158
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2da9772de33944db8f139facdfad0abc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795401717</galeid><doaj_id>oai_doaj_org_article_2da9772de33944db8f139facdfad0abc</doaj_id><sourcerecordid>A795401717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-da43d25276951f40530de099a86498bb072a3e70eb974228f5367aaa4636cca83</originalsourceid><addsrcrecordid>eNptkktrGzEUhYfSQEOaTX6BoKsWJtFbo-6McRODQzYpyU7c0cOWmRm5mnEg_fWR49I0UN2FxOE7h6vLraoLgi8Z0_gqRCKxwEQ0H6pTorWuhcbs4z_vT9X5OG5xOUxTKdVp9Xi3m2Iff8MU04BSQA8b7zu7gZjRPA1TTh16ioBu990U69vkoEPLYfLr_Or4XqC-jUMc1ujBtxZ6BINDi8X15-okQDf68z_3WfXzx-J-flOv7q6X89mqtpySqXbAmaOCKqkFCRwLhp3HWkMjuW7aFisKzCvsW604pU0QTCoA4JJJa6FhZ9XymOsSbM0uxx7ys0kQzauQ8tpAnqLtvKEOtFLU-TItzl3bBMJ0AOsCOAytLVlfj1kb6N5F3cxW5qBhLhXVWD6Rwn45srucfu39OJlt2uehfNUwLDSXosHqjVpDaSAOIU0ZbB9Ha2ZKC46JIgfq8j9UKef7aNPgQyz6O8O3o8HmNI7Zh7_dEmwOu2DedoG9AHcjok8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059465807</pqid></control><display><type>article</type><title>Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG</title><source>ABI/INFORM global</source><source>Publicly Available Content Database</source><creator>Zaway, Lassaad ; Ben Amor, Nader ; Ktari, Jalel ; Jallouli, Mohamed ; Chrifi Alaoui, Larbi ; Delahoche, Laurent</creator><creatorcontrib>Zaway, Lassaad ; Ben Amor, Nader ; Ktari, Jalel ; Jallouli, Mohamed ; Chrifi Alaoui, Larbi ; Delahoche, Laurent</creatorcontrib><description>Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the needs of people with disabilities, some disabled people find it difficult to use regular EPWs that are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology present an efficient solution to this problem. This article presents a cutting-edge intelligent control wheelchair that is intended to improve user involvement and security. The suggested method combines facial expression analysis via a camera with EEG signal processing using the EMOTIV Insight EEG dataset. The system generates control commands by identifying specific EEG patterns linked to facial expressions such as eye blinking, winking left and right, and smiling. Simultaneously, the system uses computer vision algorithms and inertial measurements to analyze gaze direction in order to establish the user’s intended steering. The outcomes of the experiments prove that the proposed system is reliable and efficient in meeting the various requirements of people, presenting a positive development in the field of smart wheelchair technology.</description><identifier>ISSN: 1999-5903</identifier><identifier>EISSN: 1999-5903</identifier><identifier>DOI: 10.3390/fi16050158</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Access control ; Algorithms ; Analysis ; Artificial intelligence ; Blinking ; Brain research ; Computational linguistics ; Computer vision ; Control systems ; control wheelchairs ; convolutional neural network (CNN) ; Deep learning ; Disabled persons ; Electroencephalogram (EEG) ; Electroencephalography ; Embedded systems ; Engineering Sciences ; facial expressions ; fusion data ; Human-computer interface ; Interfaces ; Internet ; Language processing ; Long Short-Term Memory (LSTM) ; Machine vision ; Methods ; Natural language interfaces ; Neural networks ; People with disabilities ; Privacy ; Sensors ; Signal processing ; Spectrum analysis ; Steering ; Wavelet transforms ; Webcams ; Wheelchairs</subject><ispartof>Future internet, 2024-05, Vol.16 (5), p.158</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c421t-da43d25276951f40530de099a86498bb072a3e70eb974228f5367aaa4636cca83</cites><orcidid>0000-0002-0520-9415 ; 0000-0002-8302-8409 ; 0000-0001-5453-8656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3059465807/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3059465807?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,11667,25731,27901,27902,36037,36989,44339,44566,74865,75096</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04672906$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaway, Lassaad</creatorcontrib><creatorcontrib>Ben Amor, Nader</creatorcontrib><creatorcontrib>Ktari, Jalel</creatorcontrib><creatorcontrib>Jallouli, Mohamed</creatorcontrib><creatorcontrib>Chrifi Alaoui, Larbi</creatorcontrib><creatorcontrib>Delahoche, Laurent</creatorcontrib><title>Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG</title><title>Future internet</title><description>Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the needs of people with disabilities, some disabled people find it difficult to use regular EPWs that are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology present an efficient solution to this problem. This article presents a cutting-edge intelligent control wheelchair that is intended to improve user involvement and security. The suggested method combines facial expression analysis via a camera with EEG signal processing using the EMOTIV Insight EEG dataset. The system generates control commands by identifying specific EEG patterns linked to facial expressions such as eye blinking, winking left and right, and smiling. Simultaneously, the system uses computer vision algorithms and inertial measurements to analyze gaze direction in order to establish the user’s intended steering. The outcomes of the experiments prove that the proposed system is reliable and efficient in meeting the various requirements of people, presenting a positive development in the field of smart wheelchair technology.</description><subject>Access control</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Blinking</subject><subject>Brain research</subject><subject>Computational linguistics</subject><subject>Computer vision</subject><subject>Control systems</subject><subject>control wheelchairs</subject><subject>convolutional neural network (CNN)</subject><subject>Deep learning</subject><subject>Disabled persons</subject><subject>Electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Embedded systems</subject><subject>Engineering Sciences</subject><subject>facial expressions</subject><subject>fusion data</subject><subject>Human-computer interface</subject><subject>Interfaces</subject><subject>Internet</subject><subject>Language processing</subject><subject>Long Short-Term Memory (LSTM)</subject><subject>Machine vision</subject><subject>Methods</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>People with disabilities</subject><subject>Privacy</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Steering</subject><subject>Wavelet transforms</subject><subject>Webcams</subject><subject>Wheelchairs</subject><issn>1999-5903</issn><issn>1999-5903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktrGzEUhYfSQEOaTX6BoKsWJtFbo-6McRODQzYpyU7c0cOWmRm5mnEg_fWR49I0UN2FxOE7h6vLraoLgi8Z0_gqRCKxwEQ0H6pTorWuhcbs4z_vT9X5OG5xOUxTKdVp9Xi3m2Iff8MU04BSQA8b7zu7gZjRPA1TTh16ioBu990U69vkoEPLYfLr_Or4XqC-jUMc1ujBtxZ6BINDi8X15-okQDf68z_3WfXzx-J-flOv7q6X89mqtpySqXbAmaOCKqkFCRwLhp3HWkMjuW7aFisKzCvsW604pU0QTCoA4JJJa6FhZ9XymOsSbM0uxx7ys0kQzauQ8tpAnqLtvKEOtFLU-TItzl3bBMJ0AOsCOAytLVlfj1kb6N5F3cxW5qBhLhXVWD6Rwn45srucfu39OJlt2uehfNUwLDSXosHqjVpDaSAOIU0ZbB9Ha2ZKC46JIgfq8j9UKef7aNPgQyz6O8O3o8HmNI7Zh7_dEmwOu2DedoG9AHcjok8</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zaway, Lassaad</creator><creator>Ben Amor, Nader</creator><creator>Ktari, Jalel</creator><creator>Jallouli, Mohamed</creator><creator>Chrifi Alaoui, Larbi</creator><creator>Delahoche, Laurent</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0520-9415</orcidid><orcidid>https://orcid.org/0000-0002-8302-8409</orcidid><orcidid>https://orcid.org/0000-0001-5453-8656</orcidid></search><sort><creationdate>20240501</creationdate><title>Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG</title><author>Zaway, Lassaad ; Ben Amor, Nader ; Ktari, Jalel ; Jallouli, Mohamed ; Chrifi Alaoui, Larbi ; Delahoche, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-da43d25276951f40530de099a86498bb072a3e70eb974228f5367aaa4636cca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Access control</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Blinking</topic><topic>Brain research</topic><topic>Computational linguistics</topic><topic>Computer vision</topic><topic>Control systems</topic><topic>control wheelchairs</topic><topic>convolutional neural network (CNN)</topic><topic>Deep learning</topic><topic>Disabled persons</topic><topic>Electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Embedded systems</topic><topic>Engineering Sciences</topic><topic>facial expressions</topic><topic>fusion data</topic><topic>Human-computer interface</topic><topic>Interfaces</topic><topic>Internet</topic><topic>Language processing</topic><topic>Long Short-Term Memory (LSTM)</topic><topic>Machine vision</topic><topic>Methods</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>People with disabilities</topic><topic>Privacy</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Steering</topic><topic>Wavelet transforms</topic><topic>Webcams</topic><topic>Wheelchairs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaway, Lassaad</creatorcontrib><creatorcontrib>Ben Amor, Nader</creatorcontrib><creatorcontrib>Ktari, Jalel</creatorcontrib><creatorcontrib>Jallouli, Mohamed</creatorcontrib><creatorcontrib>Chrifi Alaoui, Larbi</creatorcontrib><creatorcontrib>Delahoche, Laurent</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Directory of Open Access Journals</collection><jtitle>Future internet</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaway, Lassaad</au><au>Ben Amor, Nader</au><au>Ktari, Jalel</au><au>Jallouli, Mohamed</au><au>Chrifi Alaoui, Larbi</au><au>Delahoche, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG</atitle><jtitle>Future internet</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>16</volume><issue>5</issue><spage>158</spage><pages>158-</pages><issn>1999-5903</issn><eissn>1999-5903</eissn><abstract>Even though Electric Powered Wheelchairs (EPWs) are a useful tool for meeting the needs of people with disabilities, some disabled people find it difficult to use regular EPWs that are joystick-controlled. Smart wheelchairs that use Brain–Computer Interface (BCI) technology present an efficient solution to this problem. This article presents a cutting-edge intelligent control wheelchair that is intended to improve user involvement and security. The suggested method combines facial expression analysis via a camera with EEG signal processing using the EMOTIV Insight EEG dataset. The system generates control commands by identifying specific EEG patterns linked to facial expressions such as eye blinking, winking left and right, and smiling. Simultaneously, the system uses computer vision algorithms and inertial measurements to analyze gaze direction in order to establish the user’s intended steering. The outcomes of the experiments prove that the proposed system is reliable and efficient in meeting the various requirements of people, presenting a positive development in the field of smart wheelchair technology.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fi16050158</doi><orcidid>https://orcid.org/0000-0002-0520-9415</orcidid><orcidid>https://orcid.org/0000-0002-8302-8409</orcidid><orcidid>https://orcid.org/0000-0001-5453-8656</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1999-5903
ispartof Future internet, 2024-05, Vol.16 (5), p.158
issn 1999-5903
1999-5903
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2da9772de33944db8f139facdfad0abc
source ABI/INFORM global; Publicly Available Content Database
subjects Access control
Algorithms
Analysis
Artificial intelligence
Blinking
Brain research
Computational linguistics
Computer vision
Control systems
control wheelchairs
convolutional neural network (CNN)
Deep learning
Disabled persons
Electroencephalogram (EEG)
Electroencephalography
Embedded systems
Engineering Sciences
facial expressions
fusion data
Human-computer interface
Interfaces
Internet
Language processing
Long Short-Term Memory (LSTM)
Machine vision
Methods
Natural language interfaces
Neural networks
People with disabilities
Privacy
Sensors
Signal processing
Spectrum analysis
Steering
Wavelet transforms
Webcams
Wheelchairs
title Optimization of Wheelchair Control via Multi-Modal Integration: Combining Webcam and EEG
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Wheelchair%20Control%20via%20Multi-Modal%20Integration:%20Combining%20Webcam%20and%20EEG&rft.jtitle=Future%20internet&rft.au=Zaway,%20Lassaad&rft.date=2024-05-01&rft.volume=16&rft.issue=5&rft.spage=158&rft.pages=158-&rft.issn=1999-5903&rft.eissn=1999-5903&rft_id=info:doi/10.3390/fi16050158&rft_dat=%3Cgale_doaj_%3EA795401717%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-da43d25276951f40530de099a86498bb072a3e70eb974228f5367aaa4636cca83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3059465807&rft_id=info:pmid/&rft_galeid=A795401717&rfr_iscdi=true