Loading…

A global asymptotical stable control scheme for a Hexverter in fractional frequency transmission systems

A fractional frequency transmission system (FFTS) is the most competitive choice for long distance transmission of offshore wind power, while the Hexverter, as a newly proposed direct AC/AC converter, is an attractive choice for its power conversion. This paper proposes a novel control scheme charac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modern power systems and clean energy 2019-11, Vol.7 (6), p.1495-1506
Main Authors: MENG, Yongqing, ZOU, Yichao, LI, Huixuan, YU, Jianyang, WANG, Xifan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A fractional frequency transmission system (FFTS) is the most competitive choice for long distance transmission of offshore wind power, while the Hexverter, as a newly proposed direct AC/AC converter, is an attractive choice for its power conversion. This paper proposes a novel control scheme characterizing the global stability and strong robustness of the Hexverter in FFTS applications, which are based on the interconnection and damping assignment passivity-based control (IDA-PBC) methodology. Firstly, the frequency decoupled model of the Hexverter is studied and then a port-controlled Hamiltonian (PCH) model is built. On this basis, the IDA-PB control scheme of the Hexverter is designed. Considering the interference of system parameters and unmodeled dynamics, integrators are added to the IDA-PB controller to eliminate the steady-state error. In addition, the voltage-balancing control is applied in order to balance the capacitor DC voltages to obtain a better performance. Finally, the simulation results and experimental results are presented to verify the effectiveness and superiority of the IDA-PB controller.
ISSN:2196-5625
2196-5420
DOI:10.1007/s40565-019-0549-y