Loading…
An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities...
Saved in:
Published in: | Nature communications 2018-11, Vol.9 (1), p.4591-9, Article 4591 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 4591 |
container_title | Nature communications |
container_volume | 9 |
creator | Jetka, Tomasz Nienałtowski, Karol Filippi, Sarah Stumpf, Michael P. H. Komorowski, Michał |
description | Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities of pathways effectors (outputs). A unique perspective of information theory cannot be fully utilized due to lack of modeling tools that account for the complexity of biochemical signaling, specifically for multiple inputs and outputs. Here, we develop a modeling framework of information theory that allows for efficient analysis of models with multiple inputs and outputs; accounts for temporal dynamics of signaling; enables analysis of how signals flow through shared network components; and is not restricted by limited variability of responses. The framework allows us to explain how identity and quantity of type I and type III interferon variants could be recognized by cells despite activating the same signaling effectors.
Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components. |
doi_str_mv | 10.1038/s41467-018-07085-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2daf3e307ce74d31936f4ab4d8af4613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2daf3e307ce74d31936f4ab4d8af4613</doaj_id><sourcerecordid>2128533911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133</originalsourceid><addsrcrecordid>eNp9kktvFSEUgCdGY5vaP-DCTOLGzSjvgY1J0_ho0sSNbiUMHO7lOgMjzK3pv5d7p9bWhWwgnI8PDuc0zUuM3mJE5bvCMBN9h7DsUI8k7_CT5pQghjvcE_r0wfqkOS9lh-qgCkvGnjcntBqUYuS0-X4R2xB9ypNZQordsoWUYQm29dlM8CvlH22Ntg5smLeQQ9y08wghLTnNlTLRtTGFctsOIdktTMGasS1hE81Y2RfNM2_GAud381nz7eOHr5efu-svn64uL647yxlaOiAEg0fCUKQwUUZQj4lEgnKhes89cwOjlnvPreTOI8mGQbEBcSG8kZjSs-Zq9bpkdnrOYTL5VicT9HEj5Y02uWY1gibOeAoU9RZ65ihWVHhmBuak8UwcXe9X17wfJnAW4pLN-Ej6OBLDVm_SjRYEM0VUFby5E-T0cw9l0VMoFsbRREj7oklNkVMuMavo63_QXdrn-ndHSnJaS4YrRVbK5lRKBn__GIz0oRv02g26doM-doM-HHr1MI37I39qXwG6AmU-lBXy37v_o_0NGi7Azg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128533911</pqid></control><display><type>article</type><title>An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling</title><source>Nature_系列刊</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jetka, Tomasz ; Nienałtowski, Karol ; Filippi, Sarah ; Stumpf, Michael P. H. ; Komorowski, Michał</creator><creatorcontrib>Jetka, Tomasz ; Nienałtowski, Karol ; Filippi, Sarah ; Stumpf, Michael P. H. ; Komorowski, Michał</creatorcontrib><description>Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities of pathways effectors (outputs). A unique perspective of information theory cannot be fully utilized due to lack of modeling tools that account for the complexity of biochemical signaling, specifically for multiple inputs and outputs. Here, we develop a modeling framework of information theory that allows for efficient analysis of models with multiple inputs and outputs; accounts for temporal dynamics of signaling; enables analysis of how signals flow through shared network components; and is not restricted by limited variability of responses. The framework allows us to explain how identity and quantity of type I and type III interferon variants could be recognized by cells despite activating the same signaling effectors.
Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-07085-1</identifier><identifier>PMID: 30389942</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/127/1212 ; 631/553/1044 ; 631/553/1806 ; 631/553/2708 ; 631/553/2709 ; Biochemistry ; Coding ; Complexity ; Effectors ; Genetic Pleiotropy ; Heterogeneity ; Humanities and Social Sciences ; Information Theory ; Interferon ; Interferon Type I - metabolism ; Interferons - metabolism ; Kinetics ; Modelling ; Models, Biological ; multidisciplinary ; Science ; Science (multidisciplinary) ; Signal Transduction ; Signaling</subject><ispartof>Nature communications, 2018-11, Vol.9 (1), p.4591-9, Article 4591</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133</citedby><cites>FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133</cites><orcidid>0000-0002-3577-1222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2128533911/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2128533911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30389942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jetka, Tomasz</creatorcontrib><creatorcontrib>Nienałtowski, Karol</creatorcontrib><creatorcontrib>Filippi, Sarah</creatorcontrib><creatorcontrib>Stumpf, Michael P. H.</creatorcontrib><creatorcontrib>Komorowski, Michał</creatorcontrib><title>An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities of pathways effectors (outputs). A unique perspective of information theory cannot be fully utilized due to lack of modeling tools that account for the complexity of biochemical signaling, specifically for multiple inputs and outputs. Here, we develop a modeling framework of information theory that allows for efficient analysis of models with multiple inputs and outputs; accounts for temporal dynamics of signaling; enables analysis of how signals flow through shared network components; and is not restricted by limited variability of responses. The framework allows us to explain how identity and quantity of type I and type III interferon variants could be recognized by cells despite activating the same signaling effectors.
Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.</description><subject>631/250/127/1212</subject><subject>631/553/1044</subject><subject>631/553/1806</subject><subject>631/553/2708</subject><subject>631/553/2709</subject><subject>Biochemistry</subject><subject>Coding</subject><subject>Complexity</subject><subject>Effectors</subject><subject>Genetic Pleiotropy</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Information Theory</subject><subject>Interferon</subject><subject>Interferon Type I - metabolism</subject><subject>Interferons - metabolism</subject><subject>Kinetics</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Signaling</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktvFSEUgCdGY5vaP-DCTOLGzSjvgY1J0_ho0sSNbiUMHO7lOgMjzK3pv5d7p9bWhWwgnI8PDuc0zUuM3mJE5bvCMBN9h7DsUI8k7_CT5pQghjvcE_r0wfqkOS9lh-qgCkvGnjcntBqUYuS0-X4R2xB9ypNZQordsoWUYQm29dlM8CvlH22Ntg5smLeQQ9y08wghLTnNlTLRtTGFctsOIdktTMGasS1hE81Y2RfNM2_GAud381nz7eOHr5efu-svn64uL647yxlaOiAEg0fCUKQwUUZQj4lEgnKhes89cwOjlnvPreTOI8mGQbEBcSG8kZjSs-Zq9bpkdnrOYTL5VicT9HEj5Y02uWY1gibOeAoU9RZ65ihWVHhmBuak8UwcXe9X17wfJnAW4pLN-Ej6OBLDVm_SjRYEM0VUFby5E-T0cw9l0VMoFsbRREj7oklNkVMuMavo63_QXdrn-ndHSnJaS4YrRVbK5lRKBn__GIz0oRv02g26doM-doM-HHr1MI37I39qXwG6AmU-lBXy37v_o_0NGi7Azg</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Jetka, Tomasz</creator><creator>Nienałtowski, Karol</creator><creator>Filippi, Sarah</creator><creator>Stumpf, Michael P. H.</creator><creator>Komorowski, Michał</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3577-1222</orcidid></search><sort><creationdate>20181102</creationdate><title>An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling</title><author>Jetka, Tomasz ; Nienałtowski, Karol ; Filippi, Sarah ; Stumpf, Michael P. H. ; Komorowski, Michał</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/250/127/1212</topic><topic>631/553/1044</topic><topic>631/553/1806</topic><topic>631/553/2708</topic><topic>631/553/2709</topic><topic>Biochemistry</topic><topic>Coding</topic><topic>Complexity</topic><topic>Effectors</topic><topic>Genetic Pleiotropy</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Information Theory</topic><topic>Interferon</topic><topic>Interferon Type I - metabolism</topic><topic>Interferons - metabolism</topic><topic>Kinetics</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jetka, Tomasz</creatorcontrib><creatorcontrib>Nienałtowski, Karol</creatorcontrib><creatorcontrib>Filippi, Sarah</creatorcontrib><creatorcontrib>Stumpf, Michael P. H.</creatorcontrib><creatorcontrib>Komorowski, Michał</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jetka, Tomasz</au><au>Nienałtowski, Karol</au><au>Filippi, Sarah</au><au>Stumpf, Michael P. H.</au><au>Komorowski, Michał</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-11-02</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>4591</spage><epage>9</epage><pages>4591-9</pages><artnum>4591</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities of pathways effectors (outputs). A unique perspective of information theory cannot be fully utilized due to lack of modeling tools that account for the complexity of biochemical signaling, specifically for multiple inputs and outputs. Here, we develop a modeling framework of information theory that allows for efficient analysis of models with multiple inputs and outputs; accounts for temporal dynamics of signaling; enables analysis of how signals flow through shared network components; and is not restricted by limited variability of responses. The framework allows us to explain how identity and quantity of type I and type III interferon variants could be recognized by cells despite activating the same signaling effectors.
Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30389942</pmid><doi>10.1038/s41467-018-07085-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3577-1222</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2018-11, Vol.9 (1), p.4591-9, Article 4591 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2daf3e307ce74d31936f4ab4d8af4613 |
source | Nature_系列刊; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/250/127/1212 631/553/1044 631/553/1806 631/553/2708 631/553/2709 Biochemistry Coding Complexity Effectors Genetic Pleiotropy Heterogeneity Humanities and Social Sciences Information Theory Interferon Interferon Type I - metabolism Interferons - metabolism Kinetics Modelling Models, Biological multidisciplinary Science Science (multidisciplinary) Signal Transduction Signaling |
title | An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20information-theoretic%20framework%20for%20deciphering%20pleiotropic%20and%20noisy%20biochemical%20signaling&rft.jtitle=Nature%20communications&rft.au=Jetka,%20Tomasz&rft.date=2018-11-02&rft.volume=9&rft.issue=1&rft.spage=4591&rft.epage=9&rft.pages=4591-9&rft.artnum=4591&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-07085-1&rft_dat=%3Cproquest_doaj_%3E2128533911%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2128533911&rft_id=info:pmid/30389942&rfr_iscdi=true |