Loading…

An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling

Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-11, Vol.9 (1), p.4591-9, Article 4591
Main Authors: Jetka, Tomasz, Nienałtowski, Karol, Filippi, Sarah, Stumpf, Michael P. H., Komorowski, Michał
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133
cites cdi_FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133
container_end_page 9
container_issue 1
container_start_page 4591
container_title Nature communications
container_volume 9
creator Jetka, Tomasz
Nienałtowski, Karol
Filippi, Sarah
Stumpf, Michael P. H.
Komorowski, Michał
description Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities of pathways effectors (outputs). A unique perspective of information theory cannot be fully utilized due to lack of modeling tools that account for the complexity of biochemical signaling, specifically for multiple inputs and outputs. Here, we develop a modeling framework of information theory that allows for efficient analysis of models with multiple inputs and outputs; accounts for temporal dynamics of signaling; enables analysis of how signals flow through shared network components; and is not restricted by limited variability of responses. The framework allows us to explain how identity and quantity of type I and type III interferon variants could be recognized by cells despite activating the same signaling effectors. Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.
doi_str_mv 10.1038/s41467-018-07085-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2daf3e307ce74d31936f4ab4d8af4613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2daf3e307ce74d31936f4ab4d8af4613</doaj_id><sourcerecordid>2128533911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133</originalsourceid><addsrcrecordid>eNp9kktvFSEUgCdGY5vaP-DCTOLGzSjvgY1J0_ho0sSNbiUMHO7lOgMjzK3pv5d7p9bWhWwgnI8PDuc0zUuM3mJE5bvCMBN9h7DsUI8k7_CT5pQghjvcE_r0wfqkOS9lh-qgCkvGnjcntBqUYuS0-X4R2xB9ypNZQordsoWUYQm29dlM8CvlH22Ntg5smLeQQ9y08wghLTnNlTLRtTGFctsOIdktTMGasS1hE81Y2RfNM2_GAud381nz7eOHr5efu-svn64uL647yxlaOiAEg0fCUKQwUUZQj4lEgnKhes89cwOjlnvPreTOI8mGQbEBcSG8kZjSs-Zq9bpkdnrOYTL5VicT9HEj5Y02uWY1gibOeAoU9RZ65ihWVHhmBuak8UwcXe9X17wfJnAW4pLN-Ej6OBLDVm_SjRYEM0VUFby5E-T0cw9l0VMoFsbRREj7oklNkVMuMavo63_QXdrn-ndHSnJaS4YrRVbK5lRKBn__GIz0oRv02g26doM-doM-HHr1MI37I39qXwG6AmU-lBXy37v_o_0NGi7Azg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128533911</pqid></control><display><type>article</type><title>An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling</title><source>Nature_系列刊</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jetka, Tomasz ; Nienałtowski, Karol ; Filippi, Sarah ; Stumpf, Michael P. H. ; Komorowski, Michał</creator><creatorcontrib>Jetka, Tomasz ; Nienałtowski, Karol ; Filippi, Sarah ; Stumpf, Michael P. H. ; Komorowski, Michał</creatorcontrib><description>Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities of pathways effectors (outputs). A unique perspective of information theory cannot be fully utilized due to lack of modeling tools that account for the complexity of biochemical signaling, specifically for multiple inputs and outputs. Here, we develop a modeling framework of information theory that allows for efficient analysis of models with multiple inputs and outputs; accounts for temporal dynamics of signaling; enables analysis of how signals flow through shared network components; and is not restricted by limited variability of responses. The framework allows us to explain how identity and quantity of type I and type III interferon variants could be recognized by cells despite activating the same signaling effectors. Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-07085-1</identifier><identifier>PMID: 30389942</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/127/1212 ; 631/553/1044 ; 631/553/1806 ; 631/553/2708 ; 631/553/2709 ; Biochemistry ; Coding ; Complexity ; Effectors ; Genetic Pleiotropy ; Heterogeneity ; Humanities and Social Sciences ; Information Theory ; Interferon ; Interferon Type I - metabolism ; Interferons - metabolism ; Kinetics ; Modelling ; Models, Biological ; multidisciplinary ; Science ; Science (multidisciplinary) ; Signal Transduction ; Signaling</subject><ispartof>Nature communications, 2018-11, Vol.9 (1), p.4591-9, Article 4591</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133</citedby><cites>FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133</cites><orcidid>0000-0002-3577-1222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2128533911/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2128533911?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30389942$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jetka, Tomasz</creatorcontrib><creatorcontrib>Nienałtowski, Karol</creatorcontrib><creatorcontrib>Filippi, Sarah</creatorcontrib><creatorcontrib>Stumpf, Michael P. H.</creatorcontrib><creatorcontrib>Komorowski, Michał</creatorcontrib><title>An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities of pathways effectors (outputs). A unique perspective of information theory cannot be fully utilized due to lack of modeling tools that account for the complexity of biochemical signaling, specifically for multiple inputs and outputs. Here, we develop a modeling framework of information theory that allows for efficient analysis of models with multiple inputs and outputs; accounts for temporal dynamics of signaling; enables analysis of how signals flow through shared network components; and is not restricted by limited variability of responses. The framework allows us to explain how identity and quantity of type I and type III interferon variants could be recognized by cells despite activating the same signaling effectors. Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.</description><subject>631/250/127/1212</subject><subject>631/553/1044</subject><subject>631/553/1806</subject><subject>631/553/2708</subject><subject>631/553/2709</subject><subject>Biochemistry</subject><subject>Coding</subject><subject>Complexity</subject><subject>Effectors</subject><subject>Genetic Pleiotropy</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Information Theory</subject><subject>Interferon</subject><subject>Interferon Type I - metabolism</subject><subject>Interferons - metabolism</subject><subject>Kinetics</subject><subject>Modelling</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Signaling</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktvFSEUgCdGY5vaP-DCTOLGzSjvgY1J0_ho0sSNbiUMHO7lOgMjzK3pv5d7p9bWhWwgnI8PDuc0zUuM3mJE5bvCMBN9h7DsUI8k7_CT5pQghjvcE_r0wfqkOS9lh-qgCkvGnjcntBqUYuS0-X4R2xB9ypNZQordsoWUYQm29dlM8CvlH22Ntg5smLeQQ9y08wghLTnNlTLRtTGFctsOIdktTMGasS1hE81Y2RfNM2_GAud381nz7eOHr5efu-svn64uL647yxlaOiAEg0fCUKQwUUZQj4lEgnKhes89cwOjlnvPreTOI8mGQbEBcSG8kZjSs-Zq9bpkdnrOYTL5VicT9HEj5Y02uWY1gibOeAoU9RZ65ihWVHhmBuak8UwcXe9X17wfJnAW4pLN-Ej6OBLDVm_SjRYEM0VUFby5E-T0cw9l0VMoFsbRREj7oklNkVMuMavo63_QXdrn-ndHSnJaS4YrRVbK5lRKBn__GIz0oRv02g26doM-doM-HHr1MI37I39qXwG6AmU-lBXy37v_o_0NGi7Azg</recordid><startdate>20181102</startdate><enddate>20181102</enddate><creator>Jetka, Tomasz</creator><creator>Nienałtowski, Karol</creator><creator>Filippi, Sarah</creator><creator>Stumpf, Michael P. H.</creator><creator>Komorowski, Michał</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3577-1222</orcidid></search><sort><creationdate>20181102</creationdate><title>An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling</title><author>Jetka, Tomasz ; Nienałtowski, Karol ; Filippi, Sarah ; Stumpf, Michael P. H. ; Komorowski, Michał</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/250/127/1212</topic><topic>631/553/1044</topic><topic>631/553/1806</topic><topic>631/553/2708</topic><topic>631/553/2709</topic><topic>Biochemistry</topic><topic>Coding</topic><topic>Complexity</topic><topic>Effectors</topic><topic>Genetic Pleiotropy</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Information Theory</topic><topic>Interferon</topic><topic>Interferon Type I - metabolism</topic><topic>Interferons - metabolism</topic><topic>Kinetics</topic><topic>Modelling</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jetka, Tomasz</creatorcontrib><creatorcontrib>Nienałtowski, Karol</creatorcontrib><creatorcontrib>Filippi, Sarah</creatorcontrib><creatorcontrib>Stumpf, Michael P. H.</creatorcontrib><creatorcontrib>Komorowski, Michał</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jetka, Tomasz</au><au>Nienałtowski, Karol</au><au>Filippi, Sarah</au><au>Stumpf, Michael P. H.</au><au>Komorowski, Michał</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-11-02</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>4591</spage><epage>9</epage><pages>4591-9</pages><artnum>4591</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Many components of signaling pathways are functionally pleiotropic, and signaling responses are marked with substantial cell-to-cell heterogeneity. Therefore, biochemical descriptions of signaling require quantitative support to explain how complex stimuli (inputs) are encoded in distinct activities of pathways effectors (outputs). A unique perspective of information theory cannot be fully utilized due to lack of modeling tools that account for the complexity of biochemical signaling, specifically for multiple inputs and outputs. Here, we develop a modeling framework of information theory that allows for efficient analysis of models with multiple inputs and outputs; accounts for temporal dynamics of signaling; enables analysis of how signals flow through shared network components; and is not restricted by limited variability of responses. The framework allows us to explain how identity and quantity of type I and type III interferon variants could be recognized by cells despite activating the same signaling effectors. Signalling responses are marked by substantial cell-to-cell variability. Here, the authors propose an information theoretic framework that accounts for multiple inputs and temporal dynamics to analyse how signals flow through shared network components.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30389942</pmid><doi>10.1038/s41467-018-07085-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3577-1222</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2018-11, Vol.9 (1), p.4591-9, Article 4591
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2daf3e307ce74d31936f4ab4d8af4613
source Nature_系列刊; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/250/127/1212
631/553/1044
631/553/1806
631/553/2708
631/553/2709
Biochemistry
Coding
Complexity
Effectors
Genetic Pleiotropy
Heterogeneity
Humanities and Social Sciences
Information Theory
Interferon
Interferon Type I - metabolism
Interferons - metabolism
Kinetics
Modelling
Models, Biological
multidisciplinary
Science
Science (multidisciplinary)
Signal Transduction
Signaling
title An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20information-theoretic%20framework%20for%20deciphering%20pleiotropic%20and%20noisy%20biochemical%20signaling&rft.jtitle=Nature%20communications&rft.au=Jetka,%20Tomasz&rft.date=2018-11-02&rft.volume=9&rft.issue=1&rft.spage=4591&rft.epage=9&rft.pages=4591-9&rft.artnum=4591&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-07085-1&rft_dat=%3Cproquest_doaj_%3E2128533911%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-e221ef06a309129a63f1280635697f5f4db43c5ff5c85df084bb94b0566fa8133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2128533911&rft_id=info:pmid/30389942&rfr_iscdi=true