Loading…
GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean
While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that...
Saved in:
Published in: | Nature communications 2025-01, Vol.16 (1), p.435-18, Article 435 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2931-f69414e4b2ea9c2fa73495dde857374283641ca1c3902365b18143a15b82680a3 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 435 |
container_title | Nature communications |
container_volume | 16 |
creator | Zhu, Xinfang Yan, Xifeng Li, Weijun Zhang, Mengyue Leng, Junchen Yu, Qianqian Liu, Like Xue, Dawei Zhang, Dajian Ding, Zhaojun |
description | While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of
GmERF13
function increases nodule density, while its overexpression suppresses nodulation. Moreover, salt stress-inhibited nodule formation is greatly attenuated in
GmERF13
loss-of-function mutants, whereas it becomes more pronounced when
GmERF13
is overexpressed. Furthermore, GmERF13s can interact with Lateral Organ Boundaries Domain 16 (GmLBD16a), which attenuates GmLBD16a’s binding capacity on
Expansin17c
(
GmEXP17c
) promoter. Additionally, salt-induced
GmERF13s
expression relies on abscisic acid signaling, with direct promotion facilitated by GmABI5, illustrating their direct involvement in enhancing
GmERF13s
expression. Collectively, our study reveals a molecular mechanism by which salt stress impedes nodulation through the GmERF13-GmLBD16a-GmEXP17 module in soybean.
Salt stress inhibits legume nodulation. Here it is reported that mutants of a transcription factor gene
GmERF13
alleviate this inhibitory effect. Further investigations reveal the mechanisms by which
GmERF13
is regulated by salt stress and GmERF13 regulates nodule formation. |
doi_str_mv | 10.1038/s41467-024-55495-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2dc151dbbb9641deb9537ecd680f67d5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2dc151dbbb9641deb9537ecd680f67d5</doaj_id><sourcerecordid>3153866173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-f69414e4b2ea9c2fa73495dde857374283641ca1c3902365b18143a15b82680a3</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEolXpC7BAkdiwCWR8jVcISnuodCQkBCsWlm858VESF9sp6tvjnpTSssAbX-afzzP2X1UvoX0LLe7eJQKE8aZFpKGUCNrAk-oYtQQa4Ag_fbA-qk5T2rdlYAEdIc-rIyw4QwiJ4-rHZjr_egG4npz1KrtUJzXm2s-D1z77MNehr-dgl1EddnmIYdkNRZBdVCb7eVf_8nmoN9P24ydgqkTqFG60U_OL6lmvxuRO7-aT6vvF-bezz832y-by7MO2MUhgaHomSi-OaOSUMKhXHJd-rHUd5ZgT1GFGwCgwWLQIM6qhA4IVUN0h1rUKn1SXK9cGtZdX0U8q3sigvDwchLiTKmZvRieRNUDBaq1FgVqnBcXcGVs4PeOWFtb7lXW16PIkxs05qvER9HFk9oPchWsJwNtSKymEN3eEGH4uLmU5-WTcOKrZhSVJDBR3jAHHRfr6H-k-LHEub3WrAsEoJl1RoVVlYkgpuv6-GmjlrRfk6gVZvCAPXpBQkl497OM-5c_PFwFeBamE5p2Lf-_-D_Y3-Uy9PA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151965348</pqid></control><display><type>article</type><title>GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean</title><source>Publicly Available Content Database</source><source>PubMed</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhu, Xinfang ; Yan, Xifeng ; Li, Weijun ; Zhang, Mengyue ; Leng, Junchen ; Yu, Qianqian ; Liu, Like ; Xue, Dawei ; Zhang, Dajian ; Ding, Zhaojun</creator><creatorcontrib>Zhu, Xinfang ; Yan, Xifeng ; Li, Weijun ; Zhang, Mengyue ; Leng, Junchen ; Yu, Qianqian ; Liu, Like ; Xue, Dawei ; Zhang, Dajian ; Ding, Zhaojun</creatorcontrib><description>While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of
GmERF13
function increases nodule density, while its overexpression suppresses nodulation. Moreover, salt stress-inhibited nodule formation is greatly attenuated in
GmERF13
loss-of-function mutants, whereas it becomes more pronounced when
GmERF13
is overexpressed. Furthermore, GmERF13s can interact with Lateral Organ Boundaries Domain 16 (GmLBD16a), which attenuates GmLBD16a’s binding capacity on
Expansin17c
(
GmEXP17c
) promoter. Additionally, salt-induced
GmERF13s
expression relies on abscisic acid signaling, with direct promotion facilitated by GmABI5, illustrating their direct involvement in enhancing
GmERF13s
expression. Collectively, our study reveals a molecular mechanism by which salt stress impedes nodulation through the GmERF13-GmLBD16a-GmEXP17 module in soybean.
Salt stress inhibits legume nodulation. Here it is reported that mutants of a transcription factor gene
GmERF13
alleviate this inhibitory effect. Further investigations reveal the mechanisms by which
GmERF13
is regulated by salt stress and GmERF13 regulates nodule formation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-55495-1</identifier><identifier>PMID: 39762229</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/95 ; 38 ; 38/23 ; 631/136/2060 ; 631/337 ; 631/449/2676 ; 82/111 ; Abiotic stress ; Abscisic acid ; Abscisic Acid - metabolism ; Gene Expression Regulation, Plant ; Glycine max - genetics ; Glycine max - metabolism ; Humanities and Social Sciences ; Legumes ; Molecular modelling ; multidisciplinary ; Mutants ; Nodulation ; Nodules ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Root Nodulation - genetics ; Plants, Genetically Modified ; Promoter Regions, Genetic - genetics ; Root Nodules, Plant - genetics ; Root Nodules, Plant - metabolism ; Salinity tolerance ; Salt Stress ; Salts ; Science ; Science (multidisciplinary) ; Signal Transduction ; Soybeans ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Yeast</subject><ispartof>Nature communications, 2025-01, Vol.16 (1), p.435-18, Article 435</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Nature Publishing Group 2025</rights><rights>The Author(s) 2025 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2931-f69414e4b2ea9c2fa73495dde857374283641ca1c3902365b18143a15b82680a3</cites><orcidid>0000-0003-0218-5136 ; 0000-0002-5118-5514 ; 0000-0001-9904-7615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3151965348/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3151965348?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25728,27898,27899,36986,36987,44563,53763,53765,75093</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39762229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xinfang</creatorcontrib><creatorcontrib>Yan, Xifeng</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Zhang, Mengyue</creatorcontrib><creatorcontrib>Leng, Junchen</creatorcontrib><creatorcontrib>Yu, Qianqian</creatorcontrib><creatorcontrib>Liu, Like</creatorcontrib><creatorcontrib>Xue, Dawei</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Ding, Zhaojun</creatorcontrib><title>GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of
GmERF13
function increases nodule density, while its overexpression suppresses nodulation. Moreover, salt stress-inhibited nodule formation is greatly attenuated in
GmERF13
loss-of-function mutants, whereas it becomes more pronounced when
GmERF13
is overexpressed. Furthermore, GmERF13s can interact with Lateral Organ Boundaries Domain 16 (GmLBD16a), which attenuates GmLBD16a’s binding capacity on
Expansin17c
(
GmEXP17c
) promoter. Additionally, salt-induced
GmERF13s
expression relies on abscisic acid signaling, with direct promotion facilitated by GmABI5, illustrating their direct involvement in enhancing
GmERF13s
expression. Collectively, our study reveals a molecular mechanism by which salt stress impedes nodulation through the GmERF13-GmLBD16a-GmEXP17 module in soybean.
Salt stress inhibits legume nodulation. Here it is reported that mutants of a transcription factor gene
GmERF13
alleviate this inhibitory effect. Further investigations reveal the mechanisms by which
GmERF13
is regulated by salt stress and GmERF13 regulates nodule formation.</description><subject>13/1</subject><subject>13/95</subject><subject>38</subject><subject>38/23</subject><subject>631/136/2060</subject><subject>631/337</subject><subject>631/449/2676</subject><subject>82/111</subject><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Glycine max - genetics</subject><subject>Glycine max - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Legumes</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Mutants</subject><subject>Nodulation</subject><subject>Nodules</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Root Nodulation - genetics</subject><subject>Plants, Genetically Modified</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Root Nodules, Plant - genetics</subject><subject>Root Nodules, Plant - metabolism</subject><subject>Salinity tolerance</subject><subject>Salt Stress</subject><subject>Salts</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Soybeans</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiMEolXpC7BAkdiwCWR8jVcISnuodCQkBCsWlm858VESF9sp6tvjnpTSssAbX-afzzP2X1UvoX0LLe7eJQKE8aZFpKGUCNrAk-oYtQQa4Ag_fbA-qk5T2rdlYAEdIc-rIyw4QwiJ4-rHZjr_egG4npz1KrtUJzXm2s-D1z77MNehr-dgl1EddnmIYdkNRZBdVCb7eVf_8nmoN9P24ydgqkTqFG60U_OL6lmvxuRO7-aT6vvF-bezz832y-by7MO2MUhgaHomSi-OaOSUMKhXHJd-rHUd5ZgT1GFGwCgwWLQIM6qhA4IVUN0h1rUKn1SXK9cGtZdX0U8q3sigvDwchLiTKmZvRieRNUDBaq1FgVqnBcXcGVs4PeOWFtb7lXW16PIkxs05qvER9HFk9oPchWsJwNtSKymEN3eEGH4uLmU5-WTcOKrZhSVJDBR3jAHHRfr6H-k-LHEub3WrAsEoJl1RoVVlYkgpuv6-GmjlrRfk6gVZvCAPXpBQkl497OM-5c_PFwFeBamE5p2Lf-_-D_Y3-Uy9PA</recordid><startdate>20250106</startdate><enddate>20250106</enddate><creator>Zhu, Xinfang</creator><creator>Yan, Xifeng</creator><creator>Li, Weijun</creator><creator>Zhang, Mengyue</creator><creator>Leng, Junchen</creator><creator>Yu, Qianqian</creator><creator>Liu, Like</creator><creator>Xue, Dawei</creator><creator>Zhang, Dajian</creator><creator>Ding, Zhaojun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0218-5136</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid><orcidid>https://orcid.org/0000-0001-9904-7615</orcidid></search><sort><creationdate>20250106</creationdate><title>GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean</title><author>Zhu, Xinfang ; Yan, Xifeng ; Li, Weijun ; Zhang, Mengyue ; Leng, Junchen ; Yu, Qianqian ; Liu, Like ; Xue, Dawei ; Zhang, Dajian ; Ding, Zhaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-f69414e4b2ea9c2fa73495dde857374283641ca1c3902365b18143a15b82680a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>13/1</topic><topic>13/95</topic><topic>38</topic><topic>38/23</topic><topic>631/136/2060</topic><topic>631/337</topic><topic>631/449/2676</topic><topic>82/111</topic><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Glycine max - genetics</topic><topic>Glycine max - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Legumes</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Mutants</topic><topic>Nodulation</topic><topic>Nodules</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Root Nodulation - genetics</topic><topic>Plants, Genetically Modified</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Root Nodules, Plant - genetics</topic><topic>Root Nodules, Plant - metabolism</topic><topic>Salinity tolerance</topic><topic>Salt Stress</topic><topic>Salts</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Soybeans</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xinfang</creatorcontrib><creatorcontrib>Yan, Xifeng</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Zhang, Mengyue</creatorcontrib><creatorcontrib>Leng, Junchen</creatorcontrib><creatorcontrib>Yu, Qianqian</creatorcontrib><creatorcontrib>Liu, Like</creatorcontrib><creatorcontrib>Xue, Dawei</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Ding, Zhaojun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xinfang</au><au>Yan, Xifeng</au><au>Li, Weijun</au><au>Zhang, Mengyue</au><au>Leng, Junchen</au><au>Yu, Qianqian</au><au>Liu, Like</au><au>Xue, Dawei</au><au>Zhang, Dajian</au><au>Ding, Zhaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2025-01-06</date><risdate>2025</risdate><volume>16</volume><issue>1</issue><spage>435</spage><epage>18</epage><pages>435-18</pages><artnum>435</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of
GmERF13
function increases nodule density, while its overexpression suppresses nodulation. Moreover, salt stress-inhibited nodule formation is greatly attenuated in
GmERF13
loss-of-function mutants, whereas it becomes more pronounced when
GmERF13
is overexpressed. Furthermore, GmERF13s can interact with Lateral Organ Boundaries Domain 16 (GmLBD16a), which attenuates GmLBD16a’s binding capacity on
Expansin17c
(
GmEXP17c
) promoter. Additionally, salt-induced
GmERF13s
expression relies on abscisic acid signaling, with direct promotion facilitated by GmABI5, illustrating their direct involvement in enhancing
GmERF13s
expression. Collectively, our study reveals a molecular mechanism by which salt stress impedes nodulation through the GmERF13-GmLBD16a-GmEXP17 module in soybean.
Salt stress inhibits legume nodulation. Here it is reported that mutants of a transcription factor gene
GmERF13
alleviate this inhibitory effect. Further investigations reveal the mechanisms by which
GmERF13
is regulated by salt stress and GmERF13 regulates nodule formation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39762229</pmid><doi>10.1038/s41467-024-55495-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0218-5136</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid><orcidid>https://orcid.org/0000-0001-9904-7615</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2025-01, Vol.16 (1), p.435-18, Article 435 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_2dc151dbbb9641deb9537ecd680f67d5 |
source | Publicly Available Content Database; PubMed; Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/95 38 38/23 631/136/2060 631/337 631/449/2676 82/111 Abiotic stress Abscisic acid Abscisic Acid - metabolism Gene Expression Regulation, Plant Glycine max - genetics Glycine max - metabolism Humanities and Social Sciences Legumes Molecular modelling multidisciplinary Mutants Nodulation Nodules Plant Proteins - genetics Plant Proteins - metabolism Plant Root Nodulation - genetics Plants, Genetically Modified Promoter Regions, Genetic - genetics Root Nodules, Plant - genetics Root Nodules, Plant - metabolism Salinity tolerance Salt Stress Salts Science Science (multidisciplinary) Signal Transduction Soybeans Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Yeast |
title | GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GmERF13%20mediates%20salt%20inhibition%20of%20nodulation%20through%20interacting%20with%20GmLBD16a%20in%20soybean&rft.jtitle=Nature%20communications&rft.au=Zhu,%20Xinfang&rft.date=2025-01-06&rft.volume=16&rft.issue=1&rft.spage=435&rft.epage=18&rft.pages=435-18&rft.artnum=435&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-55495-1&rft_dat=%3Cproquest_doaj_%3E3153866173%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2931-f69414e4b2ea9c2fa73495dde857374283641ca1c3902365b18143a15b82680a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151965348&rft_id=info:pmid/39762229&rfr_iscdi=true |