Loading…

GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean

While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2025-01, Vol.16 (1), p.435-18, Article 435
Main Authors: Zhu, Xinfang, Yan, Xifeng, Li, Weijun, Zhang, Mengyue, Leng, Junchen, Yu, Qianqian, Liu, Like, Xue, Dawei, Zhang, Dajian, Ding, Zhaojun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2931-f69414e4b2ea9c2fa73495dde857374283641ca1c3902365b18143a15b82680a3
container_end_page 18
container_issue 1
container_start_page 435
container_title Nature communications
container_volume 16
creator Zhu, Xinfang
Yan, Xifeng
Li, Weijun
Zhang, Mengyue
Leng, Junchen
Yu, Qianqian
Liu, Like
Xue, Dawei
Zhang, Dajian
Ding, Zhaojun
description While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation. Moreover, salt stress-inhibited nodule formation is greatly attenuated in GmERF13 loss-of-function mutants, whereas it becomes more pronounced when GmERF13 is overexpressed. Furthermore, GmERF13s can interact with Lateral Organ Boundaries Domain 16 (GmLBD16a), which attenuates GmLBD16a’s binding capacity on Expansin17c ( GmEXP17c ) promoter. Additionally, salt-induced GmERF13s expression relies on abscisic acid signaling, with direct promotion facilitated by GmABI5, illustrating their direct involvement in enhancing GmERF13s expression. Collectively, our study reveals a molecular mechanism by which salt stress impedes nodulation through the GmERF13-GmLBD16a-GmEXP17 module in soybean. Salt stress inhibits legume nodulation. Here it is reported that mutants of a transcription factor gene GmERF13 alleviate this inhibitory effect. Further investigations reveal the mechanisms by which GmERF13 is regulated by salt stress and GmERF13 regulates nodule formation.
doi_str_mv 10.1038/s41467-024-55495-1
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_2dc151dbbb9641deb9537ecd680f67d5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2dc151dbbb9641deb9537ecd680f67d5</doaj_id><sourcerecordid>3153866173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-f69414e4b2ea9c2fa73495dde857374283641ca1c3902365b18143a15b82680a3</originalsourceid><addsrcrecordid>eNp9kstu1TAQhiMEolXpC7BAkdiwCWR8jVcISnuodCQkBCsWlm858VESF9sp6tvjnpTSssAbX-afzzP2X1UvoX0LLe7eJQKE8aZFpKGUCNrAk-oYtQQa4Ag_fbA-qk5T2rdlYAEdIc-rIyw4QwiJ4-rHZjr_egG4npz1KrtUJzXm2s-D1z77MNehr-dgl1EddnmIYdkNRZBdVCb7eVf_8nmoN9P24ydgqkTqFG60U_OL6lmvxuRO7-aT6vvF-bezz832y-by7MO2MUhgaHomSi-OaOSUMKhXHJd-rHUd5ZgT1GFGwCgwWLQIM6qhA4IVUN0h1rUKn1SXK9cGtZdX0U8q3sigvDwchLiTKmZvRieRNUDBaq1FgVqnBcXcGVs4PeOWFtb7lXW16PIkxs05qvER9HFk9oPchWsJwNtSKymEN3eEGH4uLmU5-WTcOKrZhSVJDBR3jAHHRfr6H-k-LHEub3WrAsEoJl1RoVVlYkgpuv6-GmjlrRfk6gVZvCAPXpBQkl497OM-5c_PFwFeBamE5p2Lf-_-D_Y3-Uy9PA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151965348</pqid></control><display><type>article</type><title>GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean</title><source>Publicly Available Content Database</source><source>PubMed</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zhu, Xinfang ; Yan, Xifeng ; Li, Weijun ; Zhang, Mengyue ; Leng, Junchen ; Yu, Qianqian ; Liu, Like ; Xue, Dawei ; Zhang, Dajian ; Ding, Zhaojun</creator><creatorcontrib>Zhu, Xinfang ; Yan, Xifeng ; Li, Weijun ; Zhang, Mengyue ; Leng, Junchen ; Yu, Qianqian ; Liu, Like ; Xue, Dawei ; Zhang, Dajian ; Ding, Zhaojun</creatorcontrib><description>While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation. Moreover, salt stress-inhibited nodule formation is greatly attenuated in GmERF13 loss-of-function mutants, whereas it becomes more pronounced when GmERF13 is overexpressed. Furthermore, GmERF13s can interact with Lateral Organ Boundaries Domain 16 (GmLBD16a), which attenuates GmLBD16a’s binding capacity on Expansin17c ( GmEXP17c ) promoter. Additionally, salt-induced GmERF13s expression relies on abscisic acid signaling, with direct promotion facilitated by GmABI5, illustrating their direct involvement in enhancing GmERF13s expression. Collectively, our study reveals a molecular mechanism by which salt stress impedes nodulation through the GmERF13-GmLBD16a-GmEXP17 module in soybean. Salt stress inhibits legume nodulation. Here it is reported that mutants of a transcription factor gene GmERF13 alleviate this inhibitory effect. Further investigations reveal the mechanisms by which GmERF13 is regulated by salt stress and GmERF13 regulates nodule formation.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-55495-1</identifier><identifier>PMID: 39762229</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/95 ; 38 ; 38/23 ; 631/136/2060 ; 631/337 ; 631/449/2676 ; 82/111 ; Abiotic stress ; Abscisic acid ; Abscisic Acid - metabolism ; Gene Expression Regulation, Plant ; Glycine max - genetics ; Glycine max - metabolism ; Humanities and Social Sciences ; Legumes ; Molecular modelling ; multidisciplinary ; Mutants ; Nodulation ; Nodules ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Root Nodulation - genetics ; Plants, Genetically Modified ; Promoter Regions, Genetic - genetics ; Root Nodules, Plant - genetics ; Root Nodules, Plant - metabolism ; Salinity tolerance ; Salt Stress ; Salts ; Science ; Science (multidisciplinary) ; Signal Transduction ; Soybeans ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Yeast</subject><ispartof>Nature communications, 2025-01, Vol.16 (1), p.435-18, Article 435</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Nature Publishing Group 2025</rights><rights>The Author(s) 2025 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2931-f69414e4b2ea9c2fa73495dde857374283641ca1c3902365b18143a15b82680a3</cites><orcidid>0000-0003-0218-5136 ; 0000-0002-5118-5514 ; 0000-0001-9904-7615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3151965348/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3151965348?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25728,27898,27899,36986,36987,44563,53763,53765,75093</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39762229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Xinfang</creatorcontrib><creatorcontrib>Yan, Xifeng</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Zhang, Mengyue</creatorcontrib><creatorcontrib>Leng, Junchen</creatorcontrib><creatorcontrib>Yu, Qianqian</creatorcontrib><creatorcontrib>Liu, Like</creatorcontrib><creatorcontrib>Xue, Dawei</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Ding, Zhaojun</creatorcontrib><title>GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation. Moreover, salt stress-inhibited nodule formation is greatly attenuated in GmERF13 loss-of-function mutants, whereas it becomes more pronounced when GmERF13 is overexpressed. Furthermore, GmERF13s can interact with Lateral Organ Boundaries Domain 16 (GmLBD16a), which attenuates GmLBD16a’s binding capacity on Expansin17c ( GmEXP17c ) promoter. Additionally, salt-induced GmERF13s expression relies on abscisic acid signaling, with direct promotion facilitated by GmABI5, illustrating their direct involvement in enhancing GmERF13s expression. Collectively, our study reveals a molecular mechanism by which salt stress impedes nodulation through the GmERF13-GmLBD16a-GmEXP17 module in soybean. Salt stress inhibits legume nodulation. Here it is reported that mutants of a transcription factor gene GmERF13 alleviate this inhibitory effect. Further investigations reveal the mechanisms by which GmERF13 is regulated by salt stress and GmERF13 regulates nodule formation.</description><subject>13/1</subject><subject>13/95</subject><subject>38</subject><subject>38/23</subject><subject>631/136/2060</subject><subject>631/337</subject><subject>631/449/2676</subject><subject>82/111</subject><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Gene Expression Regulation, Plant</subject><subject>Glycine max - genetics</subject><subject>Glycine max - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Legumes</subject><subject>Molecular modelling</subject><subject>multidisciplinary</subject><subject>Mutants</subject><subject>Nodulation</subject><subject>Nodules</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Root Nodulation - genetics</subject><subject>Plants, Genetically Modified</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Root Nodules, Plant - genetics</subject><subject>Root Nodules, Plant - metabolism</subject><subject>Salinity tolerance</subject><subject>Salt Stress</subject><subject>Salts</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Soybeans</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kstu1TAQhiMEolXpC7BAkdiwCWR8jVcISnuodCQkBCsWlm858VESF9sp6tvjnpTSssAbX-afzzP2X1UvoX0LLe7eJQKE8aZFpKGUCNrAk-oYtQQa4Ag_fbA-qk5T2rdlYAEdIc-rIyw4QwiJ4-rHZjr_egG4npz1KrtUJzXm2s-D1z77MNehr-dgl1EddnmIYdkNRZBdVCb7eVf_8nmoN9P24ydgqkTqFG60U_OL6lmvxuRO7-aT6vvF-bezz832y-by7MO2MUhgaHomSi-OaOSUMKhXHJd-rHUd5ZgT1GFGwCgwWLQIM6qhA4IVUN0h1rUKn1SXK9cGtZdX0U8q3sigvDwchLiTKmZvRieRNUDBaq1FgVqnBcXcGVs4PeOWFtb7lXW16PIkxs05qvER9HFk9oPchWsJwNtSKymEN3eEGH4uLmU5-WTcOKrZhSVJDBR3jAHHRfr6H-k-LHEub3WrAsEoJl1RoVVlYkgpuv6-GmjlrRfk6gVZvCAPXpBQkl497OM-5c_PFwFeBamE5p2Lf-_-D_Y3-Uy9PA</recordid><startdate>20250106</startdate><enddate>20250106</enddate><creator>Zhu, Xinfang</creator><creator>Yan, Xifeng</creator><creator>Li, Weijun</creator><creator>Zhang, Mengyue</creator><creator>Leng, Junchen</creator><creator>Yu, Qianqian</creator><creator>Liu, Like</creator><creator>Xue, Dawei</creator><creator>Zhang, Dajian</creator><creator>Ding, Zhaojun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0218-5136</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid><orcidid>https://orcid.org/0000-0001-9904-7615</orcidid></search><sort><creationdate>20250106</creationdate><title>GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean</title><author>Zhu, Xinfang ; Yan, Xifeng ; Li, Weijun ; Zhang, Mengyue ; Leng, Junchen ; Yu, Qianqian ; Liu, Like ; Xue, Dawei ; Zhang, Dajian ; Ding, Zhaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-f69414e4b2ea9c2fa73495dde857374283641ca1c3902365b18143a15b82680a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>13/1</topic><topic>13/95</topic><topic>38</topic><topic>38/23</topic><topic>631/136/2060</topic><topic>631/337</topic><topic>631/449/2676</topic><topic>82/111</topic><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Gene Expression Regulation, Plant</topic><topic>Glycine max - genetics</topic><topic>Glycine max - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Legumes</topic><topic>Molecular modelling</topic><topic>multidisciplinary</topic><topic>Mutants</topic><topic>Nodulation</topic><topic>Nodules</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Root Nodulation - genetics</topic><topic>Plants, Genetically Modified</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Root Nodules, Plant - genetics</topic><topic>Root Nodules, Plant - metabolism</topic><topic>Salinity tolerance</topic><topic>Salt Stress</topic><topic>Salts</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Soybeans</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xinfang</creatorcontrib><creatorcontrib>Yan, Xifeng</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Zhang, Mengyue</creatorcontrib><creatorcontrib>Leng, Junchen</creatorcontrib><creatorcontrib>Yu, Qianqian</creatorcontrib><creatorcontrib>Liu, Like</creatorcontrib><creatorcontrib>Xue, Dawei</creatorcontrib><creatorcontrib>Zhang, Dajian</creatorcontrib><creatorcontrib>Ding, Zhaojun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Xinfang</au><au>Yan, Xifeng</au><au>Li, Weijun</au><au>Zhang, Mengyue</au><au>Leng, Junchen</au><au>Yu, Qianqian</au><au>Liu, Like</au><au>Xue, Dawei</au><au>Zhang, Dajian</au><au>Ding, Zhaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2025-01-06</date><risdate>2025</risdate><volume>16</volume><issue>1</issue><spage>435</spage><epage>18</epage><pages>435-18</pages><artnum>435</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>While the genetic regulation of nodule formation has been well explored, the molecular mechanisms by which abiotic stresses, such as salt stress, impede nodule formation remain largely elusive. Here, we identify four APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors, GmERF13s, that are induced by salt stress and play key roles in salt-repressed nodulation. Loss of GmERF13 function increases nodule density, while its overexpression suppresses nodulation. Moreover, salt stress-inhibited nodule formation is greatly attenuated in GmERF13 loss-of-function mutants, whereas it becomes more pronounced when GmERF13 is overexpressed. Furthermore, GmERF13s can interact with Lateral Organ Boundaries Domain 16 (GmLBD16a), which attenuates GmLBD16a’s binding capacity on Expansin17c ( GmEXP17c ) promoter. Additionally, salt-induced GmERF13s expression relies on abscisic acid signaling, with direct promotion facilitated by GmABI5, illustrating their direct involvement in enhancing GmERF13s expression. Collectively, our study reveals a molecular mechanism by which salt stress impedes nodulation through the GmERF13-GmLBD16a-GmEXP17 module in soybean. Salt stress inhibits legume nodulation. Here it is reported that mutants of a transcription factor gene GmERF13 alleviate this inhibitory effect. Further investigations reveal the mechanisms by which GmERF13 is regulated by salt stress and GmERF13 regulates nodule formation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39762229</pmid><doi>10.1038/s41467-024-55495-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0218-5136</orcidid><orcidid>https://orcid.org/0000-0002-5118-5514</orcidid><orcidid>https://orcid.org/0000-0001-9904-7615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2025-01, Vol.16 (1), p.435-18, Article 435
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_2dc151dbbb9641deb9537ecd680f67d5
source Publicly Available Content Database; PubMed; Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/95
38
38/23
631/136/2060
631/337
631/449/2676
82/111
Abiotic stress
Abscisic acid
Abscisic Acid - metabolism
Gene Expression Regulation, Plant
Glycine max - genetics
Glycine max - metabolism
Humanities and Social Sciences
Legumes
Molecular modelling
multidisciplinary
Mutants
Nodulation
Nodules
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Root Nodulation - genetics
Plants, Genetically Modified
Promoter Regions, Genetic - genetics
Root Nodules, Plant - genetics
Root Nodules, Plant - metabolism
Salinity tolerance
Salt Stress
Salts
Science
Science (multidisciplinary)
Signal Transduction
Soybeans
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Yeast
title GmERF13 mediates salt inhibition of nodulation through interacting with GmLBD16a in soybean
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GmERF13%20mediates%20salt%20inhibition%20of%20nodulation%20through%20interacting%20with%20GmLBD16a%20in%20soybean&rft.jtitle=Nature%20communications&rft.au=Zhu,%20Xinfang&rft.date=2025-01-06&rft.volume=16&rft.issue=1&rft.spage=435&rft.epage=18&rft.pages=435-18&rft.artnum=435&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-55495-1&rft_dat=%3Cproquest_doaj_%3E3153866173%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2931-f69414e4b2ea9c2fa73495dde857374283641ca1c3902365b18143a15b82680a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3151965348&rft_id=info:pmid/39762229&rfr_iscdi=true